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1 Introduction

Since the introduction of the Lee�Carter model in [5] proposed to forecast the
trend of age-speci�c mortality rates, a range of mortality models have been pre-
sented with modeling target de�ned as the probability of death, the age-speci�c
mortality rate or the force of mortality. The main di�culty in the use of the
Lee�Carter model and its stochastic modi�cations is due to the assumed homo-
geneity of the random term. However, this property is not con�rmed by the
analysis of the real-life data. The problem prompted search for solutions that
could do without this assumption. One of the possible options is to set research
in the framework of the fuzzy numbers. This line of thinking was adopted by
Koissi and Shapiro [2], where empirical observations and the model's parameters
of the Lee-Carter model were treated as fuzzy symmetric triangular numbers.
The Koissi�Shapiro model involves however some problems with parameters'
estimation, which arise from the necessity to �nd the minimum of a criterion
function with a max-type operators incorporated in it. Such an optimization
task cannot be solved using standard algorithms. One approach to such a prob-
lem can be the Banach algebra of oriented fuzzy numbers (OFN), developed
by Kosi«ski with co-authors [3, 4]. In this paper the fuzzy mortality model
obtained by applying the OFN algebra to the Koissi�Shapiro model will be
presented. Prediction accuracy of the proposed model with analogous results
obtained with the use of the Lee�Carter mortality model will be also discussed.

2 The Koissi�Shapiro model

One of the most interesting generalizations of the Lee�Carter model (LC) refer-
ring to the algebra of fuzzy numbers is the fuzzy Lee�Carter model introduced
by Koissi and Shapiro [2]. This version of the mortality model assumes fuzzy
representation of the log-central death rates as well as model's parameters. Such
an approach allows taking account of uncertainty involved in mortality rates and
entering a random term into the fuzzy structure of the model.
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This concept builds on the assumption that the real log-central rates of
mortality lnmx,t are not exactly known for each age group x and time period t,
thus the role of the explanatory variable is played by log-central mortality rates
which are fuzzy numbers.

It is well-known that death statistics are subject to reporting errors of several
kinds. They may be reported for incorrect year, area, or assigned statistics that
are incorrect, e.g. age. Moreover, the midyear population data that serve as the
denominators of mortality rates are also the subject of errors. It is regarded as
the population at July 1 and is assumed to be the point at which half of the
deaths in the population during the year have appeared. Such an estimate can
be underestimated or overestimated. For these reasons, fuzzy representation of
the mortality rates seems to be justi�ed.

Koissi and Shapiro created fuzzy death rates by converting log-central mor-
tality rates lnmx,t into symmetric, triangular fuzzy numbers Yx,t expressed by
ordered pairs (yx,t, ex,t), i.e.

Yx,t = (yx,t, ex,t), x = 0, 1, . . . , X, t = 1, 2, . . . , T, (2.1)

where yx,t = lnmx,t are the crisp central values and �fuzziness parameters� ex,t
serve as spreads of fuzzy numbers Yx,t.

The Koissi�Shapiro model is de�ned as

Yx,t = Ax ⊕ (Bx �Kt), x = 0, 1, . . . , X, t = 1, 2, . . . , T, (2.2)

where Ax = (αx, sAx), Bx = (βx, sBx),Kt = (κx, sKt) are fuzzy triangular sym-
metric numbers with central values αx, βx, κx and spreads sAx , sBx , sKx , re-
spectively, while ⊕, � are the addition and multiplication operators of fuzzy
numbers (see [2] for details).

Koissi and Shapiro assumed that unknown model's parameters αx, βx, κx
and sAx

, sBx
, sKx

can be estimated minimizing a criterion function based on
the so-called Diamond distance [1]. Two components S1, S2 of the criterion
function S = S1 + S2 can be written as

S1(αx, βx, κt)=

X∑
x=0

T∑
t=1

[
3α2

x+3(βxκt)
2+3y2x,t+6αxβxκt

−4αxyx,t−4βxκtyx,t+2e2x,t
]
,

S2(βx, κt, sAx
, sBx

, sKt
)= 2

X∑
x=0

T∑
t=1

[
(max{sAx

, |βx|sKt
, |κt|sBx

})2

−2ex,t max{sAx
, |βx|sKt

, |κt|sBx
}].

(2.3)

This concept poses however a major problem in estimation, since the ex-
pression max{sAx

, |βx|sKt
, |κt|sBx

} appearing twice in S2 prevents the use of
standard non-linear optimization methods. In the next section a fuzzy mortali-
ty model simplifying the estimation procedure is proposed.

2



3 The modi�ed Koissi�Shapiro model

In the modi�ed fuzzy version of the Lee�Carter model, mortality rates and
model's parameters are represented by means of oriented fuzzy numbers. The
new model will be termed the Extended Fuzzy Lee�Carter model (EFLC).

It is assumed that the log-central death rates have the OFN representation
~Yx,t = (fYx,t

, gYx,t
) with functions fYx,t

, gYx,t
de�ned for u ∈ [0, 1] as

fYx,t
(u) = yx,t − ex,t(1− u),

gYx,t
(u) = yx,t + ex,t(1− u),

(3.1)

where yx,t = lnmx,t are (crisp) log-central death rates and ex,t are fuzziness
parameters obtained by means of fuzzi�cation procedure given by Koissi and
Shapiro [2].

The EFLC model can then be written as

~Yx,t = ~Ax ⊕ ( ~Bx ⊗ ~Kt), x = 0, 1, . . . , X, t = 1, 2 . . . , T, (3.2)

where ~Ax, ~Bx, ~Kt are OFN's expressed by means of the following ordered pairs

~Ax = (fAx , gAx),
~Bx = (fBx , gBx),

~Kt = (fKt , gKt), (3.3)

with functions fAx , gAx , fBx , gBx and fKt , gKt de�ned for u ∈ [0, 1] as

fAx
(u) = ax − (1− u)sAx

, gAx
(u) = ax + (1− u)sAx

,

fBx
(u) = bx − (1− u)sBx

, gBx
(u) = bx + (1− u)sBx

,

fKt
(u) = kt − (1− u)sKt

, gKt
(u) = kt + (1− u)sKt

.

(3.4)

For the EFLC model, it is assumed that the unknown model's parameters
are ax, bx, kt and sAx

, sBx
, sKt

incorporated in functions (3.4).

Using the addition and multiplication operators ⊕,⊗ for oriented fuzzy num-
bers (see [3] for details), the right-hand side of (3.2) takes the form

~Ax ⊕ ( ~Bx ⊗ ~Kt) = (fAx
, gAx

)⊕ (fBx⊗Kt
, gBx⊗Kt

) =

= (fAx⊕Bx⊗Kt
, gAx⊕Bx⊗Kt

),
(3.5)

where

fAx⊕Bx⊗Kt
(u)=ax+bxkt−(sAx

+ktsBx
+bxsKt

)(1−u)+sBx
sKt

(1−u)2,
gAx⊕Bx⊗Kt(u)=ax+bxkt+(sAx+ktsBx+bxsKt)(1−u)+sBxsKt(1−u)2.

(3.6)

Expressions sBx
sKt

(1−u)2 in (3.6) are close to 0 for small values of sBx
, sKt

and for u ∈ [0, 1]. Given this, we consider the following two approximation

fAx⊕Bx⊗Kt(u) ≈ ax+bxkt−(sAx+ktsBx+bxsKt)(1− u),
gAx⊕Bx⊗Kt(u) ≈ ax+bxkt+(sAx+ktsBx+bxsKt)(1− u).

(3.7)

It follows from (3.7) that right-hand side of (3.2) corresponds to symmetric
triangular numbers with central values ax + bxkt and spreads approximated by
sAx + ktsBx + bxsKt .
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4 Parameters' estimation

To estimate the parameters of the EFLC model, we applied the Diamond dis-
tance D2(·, ·) between the right and left sides of (3.2). Then the estimation
problem reduces the minimization of the following criterion

F (ax, bx, kt, sAx
, sBx

, sKt
)=

X∑
x=0

T∑
t=1

D2
(
~Ax⊕( ~Bx⊗ ~Kt), ~Yx,t

)
. (4.1)

To illustrate the theoretical discussions presenting the proposal of a new
fuzzy model and estimation results, the LC and EFLC models were estimated
based on the age-speci�c death rates for males and females in Poland from years
1990�2018. Data were sourced from the Human Mortality Database (mortali-
ty.org) and the database of the Polish Central Statistical O�ce (stat.gov.pl).
The 2014�2018 death rates were only used to evaluate prediction accuracy.

In the analysis, the ex-post crisp forecasting errors were evaluated and com-
pared with the errors yielded by the LC model. It appeared that the mortality
forecasts obtained with the EFLC model produced smaller or comparable pre-
diction errors in relation to the standard LC model. Thus, in terms of predic-
tion accuracy, the EFLC model utilizing oriented fuzzy numbers appeared to be
rather similar to the standard Lee-Carter model. What makes it superior to the
LC model, is that it allows the areas of fuzziness of the estimated parameters to
be determined, and consequently the areas of fuzziness for predicted mortality
rates. Another advantage of the EFLC model is that the areas of fuzziness can
be identi�ed without assuming any probability distribution of mortality data.
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