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1 Introduction

The fact that individuals with lower socioeconomic status have higher mortality rates has been well
established in social science research (Hummer and Lariscy, 2011). Of the various socioeconomic
measures that are commonly used to investigate this relationship, the educational gradient has been
shown to be particularly robust (Cutler et al., 2011). This educational gradient is apparent not only
in less-developed countries, but in the US (Masters et al., 2012) and other Western countries with
advanced health care systems (Huisman et al., 2005).

Educational attainment is the most commonly used indicator of socio-economic status in studies
of health and mortality. Education is usually completed by early adulthood and remains constant
over the life course and precedes other dimensions of socio-economic status. Educational attainment
is strongly associated with other measurements of the socio-economic status, like income. It has
also been established that lower income increases mortality. The association between education and
mortality may, therefore, be running through the influence of education on income.

Despite a substantial association between education and health the causal interpretation of this
relation has been challenged. This association may be confounded by factors that influence both
education and health (Grossman, 2015). Moreover, surprisingly little research has investigated the
underlying causal mechanism of education on health in the presence of one or more intermediate
variables, such as income.

Traditionally, causal mediation analysis has been formulated within the framework of linear struc-
tural models (Baron and Kenny, 1986). These models are difficult to extend to inherently nonlinear
duration outcomes such as the (mixed) proportional hazard model. Recent papers have placed causal
mediation analysis within the counterfactual/ potential outcomes framework (Huber, 2014; Imai et al.,
2010a,b; VanderWeele, 2015) all assuming sequential unconfoundedness.

Propensity score methods, that assume unconfoundedness, are increasingly used to take account
of confounding in observational studies. The advantage of the propensity score is that it enables us
to summarize the many possible confounding covariates as a single score (Rosenbaum and Rubin,
1983). Huber (2014) derived a method to make causal inference for the direct and indirect effects of a
treatment with intermediate variables. based on inverse propensity weighting (IPW). With a duration
outcome, right censoring makes inference of differences in means, as is standard in treatment analysis,
unreliable. Propensity score methods for hazard models have been introduced for duration data that
account for censoring, truncation and dynamic selection issues (Austin, 2014; Cole and Hernán, 2004).
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Bijwaard and Jones (2019) developed an adjustment of the method of Huber (2014) to analyse the
mediating effect in the context of survival models. We extend this further to allow for a sequence of,
temporally ordered, mediators.

We seek to find how education affects mortality later in life and how this is mediated through income
development. We use Swedish conscription data, linked to information on the parental socioeconomic
situation at birth, the parental education, the education of the individual himself, date of death (up
till 2012) and annual income for the period 1968 till 2012. We estimate four separate models for the
educational gain in mortality using the data of individuals in two adjacent educational levels. For each
pair we derive how much of the educational gain in the mortality rate can be attributed to the effect
of education on the income development and how much can be viewed as a direct effect of education.

2 Data

The data come from several Swedish population-wide registers which are linked using unique individual
identification. The Swedish Military Conscription Data includes demographic information of the
conscripts and information obtained at the military examination, including a battery of intelligence
tests. The data consist of the population of men born between 1950 and 1960, who were enlisted in
the year they turned 18-20. We removed men for which we do not observe the education attainment.
and men without a known conscription date. These data are linked to information on the parental
socioeconomic situation at birth, the parental education, the education of the individual himself, date
of death (up till 2012) and annual income. We aggregated the observed education into five classes: (i)
Less than 10 years of education (only primary schooling); (ii) Secondary education (2 years); (iii) Full
secondary education (3 years); (iv) Post secondary education (University and PhD) and (v) University
and PhD. The data on the time-varying income cover the years 1968-2012.

Selected demographic and parental socioeconomic characteristics at the time of military examina-
tions by education level are presented in Table 1. We see a clear positive relation between the maternal
socioeconomic status, the paternal education and the education attained by the military conscript.
The higher the social class and education of the parents the higher the education level of the conscript.

The Kaplan-Meier survival curves for the five education categories are shown in Figure 1. Survival
increases with the education level and the differences between the education levels increase with age.

Figure 1: Kaplan-Meier survival curves, by education level
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Table 1: Sample characteristics, Swedish Conscripts 1951-1960 (N = 519, 609)

Education level
primary secondary secondary Post university

(2 years) (3 years) secondary

Parental EGP
high grade professional 1% 1% 1% 2% 2%
low grade professional 31% 40% 53% 64% 65%
routine non-manual 8% 7% 6% 4% 4%
small entrepreneur 8% 8% 5% 4% 3%
manual 45% 40% 27% 18% 14%
missing 7% 4% 7% 9% 11%

Father’s education
less 10 years 54% 48% 32% 22% 18%
Secondary edu (max 12) 26% 27% 25% 19% 17%
Secondary edu (13) 10% 14% 19% 22% 20%
Post secondary 4% 6% 10% 12% 13%
university 4% 4% 13% 24% 32%
missing 2% 1% 1% 1% 0%

Mother’s education
less 10 years 46% 39% 26% 19% 15%
Secondary edu (max 12) 39% 43% 40% 33% 29%
Secondary edu (13) 5% 5% 8% 9% 9%
Post secondary 5% 7% 12% 15% 16%
university 5% 5% 14% 24% 31%
missing 0% 0% 0% 0% 1%

Birth order
Birth order 1 46% 47% 52% 54% 54%
Birth order 2 32% 35% 34% 33% 34%
Birth order 3 14% 12% 11% 9% 9%
Birth order 4 5% 4% 2% 2% 2%
Birth order 5 2% 1% 1% 1% 0%
Birth order > 5 1% 1% 0% 0% 0%

Family size
1 20% 16% 16% 13% 13%
2 39% 45% 49% 52% 52%
3 25% 26% 26% 27% 27%
4 10% 8% 7% 6% 6%
5 3% 2% 2% 1% 1%
> 5 3% 2% 1% 1% 1%

income
average income 109 133 141 158 182
average log-income 4.45 4.80 4.84 4.96 5.10

N = 63,489 218,272 107,578 106,710 23,560
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3 Static mediator and outcome

3.1 Counterfactual approach

The intuitive idea behind causation is represented by changes in the outcome due to changes in the
treatment. To properly measure causality we should then compare what would have happen to the
outcome for different settings of the treatment (education). The problem is that, for each individual,
we can only observe the outcome for the education level attained, not for the alternative education
level(s). Here we introduce the counterfactual framework for treatment evaluation. In our case the
‘treatment’ is the education level attained.

Define the potential outcome Y (d) as the outcome an individual would have if the treatment were
D = d. Thus for a binary treatment, Y (0) is the outcome we could expect if the individual did
not get the treatment and Y (1) is the outcome we expect if the individual got the treatment. We
only observe one of these outcomes and the observed outcome is Y = D · Y (1) + (1 − D) · Y (0).
The individual total effect Yi(1) − Yi(0) is never observed, but under some conditions the average
total effect, E

[
Yi(1)−Yi(0)

]
is identified. A typical condition that allows the identification of the total

effect is random assignment of the treatment, because it implies that {Y (1), Y (0)}
∐
D, with

∐
means

independence. With random assignment the potential outcome is independent of the treatment.
In observational studies it is hardly ever reasonable to assume that the potential outcomes are

independent of the (possibly induced by selective choice) treatment. If the treatment selection is
based on observed individual characteristics, X it is allowed to assume conditional independence
{Y (1), Y (0)}

∐
D|X. This is called the unconfoundedness or ignorability assumption (Rosenbaum

and Rubin, 1983; Rubin, 1974). If the overlap assumption also holds the total effect is identified by
using matching on or weighting by the propensity score. The overlap assumption, or common support
assumption, requires that the propensity score, the conditional probability to select treatment given
covariates X, is bounded away from zero and one.

If treatment selection depends on unobserved factors that also influence the potential outcome
the ignorability assumption fails to hold. One approach to account for such unobserved factors is a
structural equation model, that explicitly models the influence of these factors on the treatment and
outcome.

3.2 Counterfactual mediation analysis

Recent papers have placed causal mediation analysis within the counterfactual/potential outcomes
framework (Huber, 2014; Imai et al., 2010a,b). If a mediator also plays a role in the outcome the
potential outcome is also a function of the mediator, Y (d,m), the potential outcome that would have
been observed if the treatment was d and the mediator was m. Next the mediator is also affected by
the treatment and we have a potential mediator M(d), the mediator that would have been observed
if the treatment was equal to d. Then we can define the (average) total effect of the treatment as
E
[
Yi(1,Mi(1))−Yi(0,Mi(0))

]
and the direct effect of the treatment as E

[
Yi(1,Mi(0))−Yi(0,Mi(0))

]
.

The indirect effect of the treatment running through the mediator M is defined as E
[
Yi(1,Mi(1)) −

Yi(1,Mi(0))
]
. Note that the sum of the direct and indirect effect is equal to the total effect of the

treatment.
For identification of the direct and indirect effects we need a sequential ignorablility condition

(Bijwaard and Jones, 2019; Huber, 2014; Imai et al., 2010a,b),

Sequential Ignorability Assumption.
The following two statements of conditional independence hold:
{Yi(d′,m),Mi(d)}⊥Di|X and Yi(d

′,m)⊥Mi(d)|Di = d,X, ∀d, d′ and m in the support of M .
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which implies that both, conditional on observed covariates X, no unobserved confounder exists
that jointly affects the treatment selection, the potential mediator and the potential outcome and that,
conditional on observed covariates and the treatment, no unobserved confounder exists that jointly
affects the potential mediator and the potential outcome. This can be tested, e.g. see (Bijwaard
and Jones, 2019; Imai et al., 2010a,b). Allowing for unobserved factors that influence the treatment,
mediator and the outcome, i.e. violating the sequential ignorablility condition, can be dealt with using
a structural model.

4 Inverse propensity weighting model using average income

We define the educational effect of moving up one education level in terms of a proportional change
in the mortality hazard rate. Because we base our educational effect on (mixed) proportional hazard
models of the mortality rate, it is natural also to define the mediator effects proportionally. When we
have just one, time-invariant, mediator we can use the Bijwaard and Jones (2019) mediation method
for (mixed) proportional hazard models. They assume (next to sequential ignorability) a proportional
mediator effect. Then the direct effect, not running through income, of education can be identified
using an inverse Propensity Weighting (IPW) method with weights:

W (d) =
Pr(D = d|M,X)

Pr(D = d|X)

(
D

Pr(D = 1|M,X)
+

1−D
Pr(D = 0|M,X)

)
(1)

with weight W (d) for θ(d), for d = 0, 1.

The ‘total effect’ of education on the mortality rate, from an IPW estimation in which the mediator
is excluded from the propensity score, can be decomposed into an effect of education running through
the mediator η(·) and an effect of education running through other pathways θ(d).

Although we observe income on an annual basis we first assume (average) income is a time-invariant
and use the average (log)income as a mediator of the education effect on mortality.

5 Inverse propensity weighting model

Here we explain how we can account for the evolution of income of the life course in estimating the
direct and indirect effects of education on mortality.

Income is observed to change at fixed moments in time. We also assume that sequential ignorabil-
ity holds for every income observation (the sequential mediators), conditional on observed individual
characteristics and the income history up till the income we consider. We extend the Bijwaard and
Jones (2019) method to (sequentially ordered) mediators, the income at fixed time points. An impor-
tant difference with dynamic mediation analysis in the literature (e.g. Daniel et al. (2015)) is that our
‘treatment’, the education level, is time-invariant (fixed after completion). We therefore do not need
to consider how the treatment changes over time with the mediator.

Before we turn to the analysis of (M)PH model we show the intuition using a linear model with 2
(temporally) ordered mediators. Define the potential valuesM1(d),M2(d,m1), Y (d,m1,m2),M2(d,M1(d

′)))
and Y

(
d,M1(d

′),M2(d
′′,M1(d

′))
)
. Thus the potential outcome depends on (suppressing the depen-

dence on observed characteristics) the treatment D = d, the first potential mediator, M1(d
′) (which

depend on the education level) and the second potential mediator (which depends on the education
and the first mediator). The expected values for the potential output is:

E
[
Y
(
d,M1(d

′),M2(d
′′,M1(d

′))
)]

=

∫
E
[
Y |D = d,M1 = m1,M2 = m2, X = x

]
fM2|D,M1,X(m2|D = d′′,M1 = m1, X = x) · fM1|D,X(m1|D = d′, X = x)fX(x) dm2dm

′
1dm1dx (2)
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where f(·|·) is a conditional density function. All the densities can, using similar reasoning as Huber
(2014) (and (Bijwaard and Jones, 2019)) and Bayes’ rule be written in terms of propensity scores,
Pr(D = d|·, X = x):

E
[
Y
(
d,M1(d

′),M2(d
′′,M1(d

′))
)]

=

∫
E
[
Y |D = d,M1 = m1,M2 = m2, X = x

]
Pr(D = d′′|M2,M1 = m

′
1, X = x)

Pr(D = d′′|M1 = m
′
1, X = x)

· Pr(D = d′|M1 = m1, X = x)

Pr(D = d′|X = x)
fX(x) dm2dm

′
1dm1dx (3)

From (3) we can derive the weights needed to calculate the direct, and different indirect effects in a
(M)PH hazard model. The weights for the total effect are

Wtot =
D

Pr(D = 1|X)
+

(1−D)

Pr(D = 0|X)
(4)

The weights for the direct effect for income of those with D = 0, W (0), are derived
from Y

(
1,M1(0),M2(0,M1(0))

)
and Y

(
0,M1(0),M2(0,M1(0))

)
and the weights for the direct effect

for income of those with D = 1, W (1), are derived from Y
(
1,M1(1),M2(1,M1(1))

)
and

Y
(
0,M1(1),M2(1,M1(1))

)
1

WDir(0) =
Pr(D = 0|M2, X)

Pr(D = 0|X)

[
Y ·D

Pr(D = 1|M2, X)
− Y · (1−D)

Pr(D = 0|M2, X)

]
(5)

WDir(1) =
1

Pr(D = 1|X)

[
Y ·D − Y · (1−D)

Pr(D = 1|M2, X)

Pr(D = 0|M2, X)

]
(6)

with M2 = {M1,M2}. The weights for the indirect effect through M1 are derived from
Y
(
1,M1(1),M2(1,M1(1))

)
and Y

(
1,M1(0),M2(1,M1(0))

)
or Y

(
1,M1(1),M2(0,M1(1))

)
and

Y
(
1,M1(0),M2(0,M1(0))

)
WI,M1(0) =

Y · (1−D)

Pr(D = 0|M2, X)

[
Pr(D = 1|M2, X)

Pr(D = 1|X)
− Pr(D = 1|M2, X)

Pr(D = 1|M1, X)

Pr(D = 0|M1, X)

Pr(D = 0|X)

]
(7)

WI,M1(1) =
Y ·D)

Pr(D = 1|M2, X)

[
Pr(D = 0|M2, X)

Pr(D = 0|M1, X)

Pr(D = 0|M1, X)

Pr(D = 0|X)
− Pr(D = 0|M2, X)

Pr(D = 0|X)

]
(8)

The weight for the indirect effect through M2 is derived from Y
(
1,M1(1),M2(1,M1(0))

)
and

Y
(
1,M1(1),M2(0,M1(0))

)
WI,M2(0) =

Y · (1−D)

Pr(D = 0|M2, X)

[
Pr(D = 1|M2, X)

Pr(D = 1|X)

Pr(D = 0|M1, X)

Pr(D = 0|X)
− Pr(D = 0|M2, X)

Pr(D = 0|X)

]
(9)

WI,M2(1) =
Y ·D)

Pr(D = 1|M2, X)

[
Pr(D = 1|M2, X)

Pr(D = 1|X)
− Pr(D = 1|M2, X)

Pr(D = 1|M1, X)

Pr(D = 0|M1, X)

Pr(D = 0|X)

]
(10)

However, we are only interested in the direct and sum of all indirect effects, which is the total effect
minus the direct effect.

Extending this to K sequential mediators, assuming that (i) The potential income depends only on
the educational attainment, the previous income and observed characteristics and (ii) The weights for

1In principle we could also define direct effects based on (i) Y
(
1,M1(0),M2(1,M1(0))

)
and Y

(
0,M1(0),M2(1,M1(0))

)
or (ii) Y

(
1,M1(1),M2(0,M1(1))

)
and Y

(
0,M1(1),M2(0,M1(1))

)
. We think the others are more natural.
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the direct effect (not running through any of the K income observations) are

WDir(0) =
Pr(D = 0|MK , X)

Pr(D = 0|X)

[
Y ·D

Pr(D = 1|MK , X)
− Y · (1−D)

Pr(D = 0|MK , X)

]
(11)

WDir(1) =
1

Pr(D = 1|X)

[
Y ·D − Y · (1−D)

Pr(D = 1|MK , X)

Pr(D = 0|MK , X)

]
(12)

with MK = {M1, . . . ,MK}. Thus for estimating the direct effects of education on mortality we only
need to estimate the propensity scores conditional on the covariates and at each time tk conditional
on the covariates and the income history up till tk.

6 Results

We assume a Gompertz proportional hazard model for the mortality. As controls we include variables
that influence both the educational attainment and mortality: birth order, family size, birth year, birth
month (to account for possible seasonal effects), father’s education, mother’s education and parental
EGP. Table 2 reports the estimated effect on the mortality hazard of moving up one educational level.
The first column provides the results from ‘standard’ (Gompertz) proportional hazard regression. Not
adjusting for selective education choice, comparing the unadjusted estimates with the IPW estimates,
overestimates the impact of education (especially for the lowest education group). We conclude from
these analyses that men with only two years of secondary education would reduce their mortality rate
with 36% (=1 − e−0.464) if they had attained one more year of secondary education. For the other
education levels the gain is lower but still substantial (22%-24%).

Table 2: Impact of education levels on the mortality rate, total effect

Unadjusted IPW estimate

Primary to −0.360∗∗ −0.243∗∗

secondary (2 years) (0.013) (0.013)
Secondary (2 years) to −0.464∗∗ −0.445∗∗

secondary (3 years) (0.021) (0.021)
Secondary (3 years) to −0.293∗∗ −0.271∗∗

Post secondary (0.028) (0.028)
Post secondary to −0.253∗∗ −0.242∗∗

higher (0.026) (0.030)

+p < 0.05 and ∗∗p < 0.01

In Table 3 we present the decomposition of the effects of education on the mortality rate, running
through the effect it has on income (η) and the direct effect (θ). We see a clear difference among the
low educated, only primary education, the medium educated, two years of secondary education and
the higher educated. For the low educated the effect of improving education on mortality is mainly a
direct effect of education. For the medium educated half of the educational gain is running through an
increase in income, while for the higher educated the direct effect of education is negative (increasing
mortality) and the main effect of education improvement is running through and increase in income.
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Table 3: Decomposition of the educational gradient on the mortality rate, into an effect running
though income and running through other pathways

other pathways income
θ(1) θ(0) η(0) η(1)

Primary to −0.219∗∗ −0.217∗∗ −0.025 −0.026
secondary (2 years) (0.013) (0.013) (0.018) (0.018)

Secondary (2 years) to −0.202∗∗ −0.288∗∗ −0.244∗∗ −0.157∗∗

secondary (3 years) (0.020) (0.020) (0.029) (0.029)
Secondary (3 years) to 0.157∗∗ 0.059+ −0.429∗∗ −0.330∗∗

Post secondary (0.029) (0.026) (0.040) (0.038)
Post secondary to 0.179∗∗ 0.080∗∗ −0.421∗∗ −0.322∗∗

higher (0.031) (0.028) (0.043) (0.041)

+p < 0.05 and ∗∗p < 0.01
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