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Abstract

Importance of describing mortality at the limits of life span has lately lead to rel-
evant as well as controversial articles. Whereas considerable effort has been made in
collecting data and estimating models on oldest-old individuals, testing statistical con-
fidence about eventual conclusions has been largely neglected. How certain can we be
saying that risk of dying increases, levels out, or paradoxically decreases over age 105?
Can we detail particular mortality age-patterns at those high ages? In this paper, it is
shown that very little can be affirmed when we venture in describing mortality at ex-
treme ages. Instead of analyzing actual data, we perform a series of simulation studies
mimicking actual scenarios. By knowing the true underlying age-patterns, we generate
lifetimes which are either fully observed or censored/truncated from controlled mecha-
nisms. Our findings are thus robust with respect to factors such particular observation
schemes, heterogeneity and data quality issues. Given sample sizes currently available
and levels of mortality experienced in present populations, we show that before age
110 only a gompertzian increase of mortality can be eventually detected. Afterwards a
plateau will be regularly recognized as the most suitable pattern, regardless the com-
plexity of the true underlying mortality.

Keywords: Extreme ages; Gompertz model, Likelihood-ratio test; Mortality plateau;
Simulations; Smooth hazard
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Null hypothesis is never proved or
established, but is possibly disproved,
in the course of experimentation.

Ronald Fisher (1935)
The Design of Experiments

Oliver and Boyd, p. 18

1 Introduction

Knowledge about the shape of mortality at very high ages, here above 105, is essential to
test possible evolutionary theories and to understand whether humans experience a limit in
the increasing risk of dying. However, estimating mortality at extreme ages poses two main
related issues: we deal with small sample sizes that experienced high mortality. Consequently,
we work with populations that might render any study fallacious. Despite these intrinsic
limitations, several researches attempted to shed light on the age-pattern of mortality at
very high ages, with mixed outcomes.

A crucial aspect of this type of data is the reliability of the reported age: we commonly
deal with old vital registries as well as with age misreporting and exaggerations. An example
of collective effort to provide thoroughly validated information on individuals who attain ex-
treme ages is the International Database on Longevity (2019, IDL). Since twenty years, this
research consortium have being collecting (and analyzing) data on the so-called supercente-
narians (who has lived ≥ 110 years) and then on the larger group of semi-supercentenarians
(≥ 105).

Concerning the analysis of these and other analogous mortality datasets, and at the risk
of simplifying the scene, we could identify two antithetical conclusions. On the one hand,
several studies, based on individual data, have pointed out the existence of a plateau when
individuals reach extreme ages. On the other, signals of a continuous increasing of mortality
have been acknowledged by other researches. In the former group, we can recognize the
studies by Gampe (2010) and Rootzén and Zholud (2017) that, using IDL data, show a
constant risk of dying after age 110. Barbi et al. (2018b) present an analysis of Italian data
and indicate an essentially constant mortality beyond age 105. Explicit in its conclusions,
doubts have been raised on this last study and a stimulating debate have prompted (Barbi
et al., 2018a; Beltrán-Sánchez et al., 2018; Camarda et al., 2018; Gavrilov and Gavrilova,
2019; Medford, 2018; Milholland et al., 2018; Newman, 2018a,b; Olshansky and Carnes,
2018; Wachter, 2018).

Conversely, absence of a mortality plateau have been found by Gavrilova et al. (2017) that,
using IDL data, have that mortality after age 110 years do not stay constant. An analysis
on French semi-supercentenarians revealed that a constant mortality level beyond age 105
can be statistically rejected (Dang et al., 2019). Using individual Dutch data, Einmahl et al.
(2019) claimed a statistical evidence about an upper limit to the life and therefore to the
absence of a mortality plateau.

With the objective of better understand human mortality at extreme ages, age trajectories
and their development over time, another strand of research have employed aggregate data.
For instance, a steady increase in the risk of dying at very high ages have been advocated
(Gavrilov et al., 2017; Gavrilova and Gavrilov, 2011, 2015), and analysis of time trends in
maximum attained ages have been used to state that human lifespan has reached its limit
(Dong et al., 2016; Milholland et al., 2017; Vijg and Le Bourg, 2017). However, doubts on
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data quality and statistical approaches in these studies have been also raised (Brown et al.,
2017; de Beer et al., 2017; Hughes and Hekimi, 2017; Keiding, 2018; Lenart and Vaupel, 2017;
Rozing et al., 2017) and other studies have reached different conclusions (Antero-Jacquemin
et al., 2015; Lenart et al., 2018; Rau et al., 2017).

In this study, we make a step back and re-formulate the main questions. Before disputing
whether the risk of dying is increasing or stalling and consequently speculating in terms of
biological theories and cure for aging, it is necessary to figure out how confident we are about
any eventual outcome. We are thus not interested in the actual shape of mortality at high
ages, but rather in the amount of reliance expected when claims are made about longevity
above age 105.

In order to pursue with this aim, we free our analysis from any possible issue actual
datasets bring along and work on simulated data only. Specifically, we generate fully ob-
served lifetimes which are eventually censored and truncated using known mechanisms. Con-
sequently specific observation schemes will solely influence the estimated uncertainty in the
results. Moreover sample selections is not considered and they thus cannot beset our out-
comes. Only random fluctuations due to sample size will affect estimated values and het-
erogeneity in frailty cannot be an explanation for specific conclusions. Most importantly,
we have a complete knowledge of the underlying risk of dying and therefore we are able to
exactly test whether a specific model is able to properly describe the true latent mortality.

In the following two simulation studies are considered. First we assume lifetimes as a
realization of a Gompertz law, that is a exponential increase of mortality over age. We use
different starting levels of mortality, values of rate-of-aging and sample sizes. By varying
these factors, we test the capability to discriminate between true underlying pattern and
simpler exponential distribution, which assumes a constant level or mortality, i.e. a plateau.
By incorporating censored and truncated mechanisms, we show how these factors are simply
decreasing the confidence about any finding.

Still we are in a dichotomous world in which either we accept a Gompertz or a plateau
at extreme ages. In order to overcome this condition, a second simulation setting will free
the estimated mortality age-pattern from any rigid structure. Starting from true Gompertz
distributions with different sample sizes and observation schemes, a smooth risk of dying will
be estimated to assess if patterns might be identified for specific age ranges.

To better mimic actual scenarios, we employ true values which are about those obtained
by estimating similar models on actual data (Barbi et al., 2018b; Dang et al., 2019; Gampe,
2010; Gavrilova and Gavrilov, 2011; Rau et al., 2017). However we consider a much larger
spectra of possible age-patterns and test their plausibility estimating highest attained age as
in Thatcher (1999).

The remainder of this paper is structured as follows. Section 2 presents basic assump-
tions and describes survival analysis concepts which lay the groundwork for further steps. We
illustrate how to simulate lifetimes from parametric models as well as censoring and trunca-
tion mechanisms. In Section 2.2 a penalized version of the likelihood for Piecewise constant
hazard model is used to estimate smooth hazards. Outcomes for both parametric and non-
parametric approaches are given in Section 3. In the first part we present how often and in
which scenarios we are able to retrieve from simulated data the true underlying model using
classic likelihood-ratio test within a parametric setting. In Section 3.2 with no assumption on
the mortality age-pattern, we show how challenging is to capture the true Gompertz model
at extreme ages. Finally, we draw our conclusions in Section 4.
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2 Simulating and estimating survival models

When the interest is the description of the risk of dying in a certain population, survival
analysis provides statistical tools for analyzing individual data. As in a regression setting, we
have a dependent variable or response which is, in our context, the waiting time until death.
Let denote by T the non-negative continuous random variable representing time-to-death.
We can describe T with a probability density function f(t) and a cumulative distribution
function F (t) = Pr{T ≤ t}. However, it is often more convenient to work with associated
survival and hazard functions:

S(t) = Pr{T > t} = 1− F (t) =

∫ ∞
t

f(x)dx

h(t) = lim
dt→0

Pr(t < T ≤ t+ dt|T > t)

dt
. (1)

Whereas S(t) gives the probability of being alive at time t and it is the complement of F (t),
the hazard function can be interpreted as the instantaneous death rates and demographers
commonly labeled it “force of mortality”. Relationships between these functions can be easily
derived and sum up by the following equations:

h(t) =
f(t)

S(t)
, h(t) = − d

dt
lnS(t) , S(t) = exp

[
−
∫ t

0

h(u)du

]
(2)

For further details, see Klein and Moeschberger (2003).

2.1 Parametric models

The simplest possible survival distribution is obtained by assuming a constant risk over age:

h(t; a) = a ≥ 0 . (3)

Commonly labeled as Exponential, this distribution plays a central role in survival analysis.
In our context, finding a plateau means that mortality at extreme ages is well described by
(3).

Following Gompertz (1825), we can define a slightly more complex distribution by assum-
ing an exponential increase of mortality over age:

h(t; a, b) = aebt , (4)

where a, b ≥ 0 are parameters used to describe the starting level of mortality and rate-of-
aging, respectively. Often applied to describe distribution of adult lifespans, the Gompertz
law can be considered a generalization of the Exponential distribution with b = 0. In other
words, if a dataset can be better described including the parameter b, a mortality plateau
should be dismissed as hypothesis.

In our simulation settings, individual times-to-death will be generated by a Gompertz
distribution with given parameters a and b using the inverse transform sampling method
(Devroye, 1986). Given (4) and inverting the associated cumulative distribution function, N
sample lifetimes are computed as follows:

ti =
1

b
ln

[
1− b

a
ln (1− ui)

]
, i = 1, . . . N (5)
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where ui ∼ U(0, 1).
A common feature in actual supercentenarian datasets are censored and truncated obser-

vations. In our simulation setting, we only account for the most common right censoring and
left truncation, both considered non-informative. In the former scheme we only know that
a supercentenarian is still alive at a given time. In the latter situation, only supercentenar-
ians who survive a sufficient time are included in our simulated dataset. Other observation
schemes (left censoring, right truncation and interval censoring) may be included making
the whole estimation procedure statistically more complex and without modifying our final
conclusions. Indeed, their inclusion will lead to higher uncertainty in the results. Our out-
comes can thus be considered more conservative with respect to what one would obtain by
analysing actual datasets with all possible censoring and truncation schemes.

To simulate survival data with censoring, we need to model the hazard function for time
to censoring. In the following, we opt for a simple Exponential distribution: the risk of
being censored is constant over age and independent from the risk of dying. For ease of
presentation we label by ν the parameter for the censoring times ci. As in (5), we proceed
for the Exponential distribution and obtain:

ci =
− ln(1− ui)

ν
, i = 1, . . . N (6)

where ui are random number from a Uniform distribution. The observed exit time is the
minimum of the censoring and lifetimes: yi = min{ti, ci}. Moreover an indicator variable,
called δi, will be generated stating whether observation terminated by death (δi = 1) or by
censoring (δi = 0).

Left truncation is simulated by assigning to randomly selected L ≤ N individuals an
entry time wi which is generated by a Uniform distribution with minimum and maximum
such that 0 ≤ wi ≤ yi. For all other N − L observations, wi will be equal to zero, i.e. age
105.

Given a set of simulated triplets (wi, yi, δi), i = 1, . . . , N , we employ the maximum likeli-
hood estimation to obtain the parameters from a specific model and, for convenience, we work
with the natural logarithm of the likelihood function. We maximize the following function:

`(θ) = lnL(θ) =
N∑
i=1

{δi lnh(yi;θ) + lnS(yi;θ)− lnS(wi;θ)} (7)

where θ identifies either the constant hazard a, or the Gompertz set of parameters θ = (a, b).
Maximization is obtained numerically with R routines devised by Jackson (2016).

Since the Exponential can be nested within the Gompertz distribution, we use the likelihood-
ratio test for comparing the goodness of fit of these two demographic models. Let denote by
LE(â) and LG(â, b̂) the maximized likelihoods under the Exponential and Gompertz model,
respectively. The ratio of these two quantities

LR =
LE(â)

LG(â, b̂)
(8)

is bounded between 0 and 1, and it expresses how many times more likely the data are under
one model than the other. Under certain regularity conditions, minus twice the log of the
likelihood ratio has approximately a χ2 distribution with degrees of freedom equal to the
difference in the number of parameters between the two models, 1 in our context:

− 2 lnLR = 2 lnLG(â, b̂)− 2 lnLE(â)→ χ2
1 . (9)
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The knowledge about the asymptotic behavior of this test can be used to compute a p-value
and to provide a decision rule in selecting the model. For instance, if we reject the plateau
hypothesis when the p-value is smaller than 0.05, it means that we consider tolerable a
maximum of 5% probability to commit the error “reject a mortality plateau hypothesis when
is actually true”.

2.2 Smooth hazard

Moving away from a parametric setting, Piecewise constant hazard models are a more flexible
option for describing hazard function. In general, we partition the age axis into m intervals
and we assume the hazard to be constant within each interval. Widely used in demography
when prior knowledge of the underlying hazard function is weak, this model can be estimated
using Poisson regression (Holford, 1980). Two limitations are evident in this approach:
estimated hazard function will be discontinuous and there is a degree of subjectivity in
the choice of the breakpoints.

In order to overcome both issues simultaneously, we propose to intentionally over-parametrize
the basic model with a large m and to restrict, via a penalty, all redundant features for achiev-
ing a wisely parsimonious description of the hazard. Specifically, we divide the age axis into
narrow bins of equal length δ and we compute two m-dimensional vectors y and e contain-
ing, in the m bins, the numbers of deaths and the total exposure times experienced by all N
individuals. We can estimate the constant hazard hj in each bin j by assuming that yj are
Poisson distributed counts with expected value µj = hjej.

Without additional assumptions, hj simply corresponds to death rates for each bin. Con-
sequently estimated hazard trajectories will be remarkably jagged when m gets larger (i.e. δ
smaller), also taking into account that we deal with relatively few deaths. We thus decide to
enforce smoothness over age to obtain a reliable description of the force of mortality with-
out assuming a strong structure of its pattern. This approach also allows us to find out
trajectories for specific age ranges without imposing a general law of mortality for all ages.

Within a Poisson regression, logarithm is used as link-function and estimation is obtained
for the log-mortality, η = lnµ. Smoothness can be achieved by adding a difference penalty
in a standard Poisson regression setting (Eilers and Marx, 1996). Let denote by Dd the
difference matrix of order d, we can adopt a penalized version of the iteratively reweighted
least squares algorithm to estimate a smooth hazard:

(Ẽ + λD′dDd)η̃ = y − µ̃+ Ẽ µ̃ (10)

where Ẽ = diag(µ̃) and the tilde-symbol denotes current approximations to the solution.
The smoothing parameter λ regulates the trade-off between goodness-of-fit and effective
dimension used into the model. On the one hand higher values will lead to higher penalty
term and, consequently, smoother hazard. On the other, λ = 0 results to a straightforward
Poisson estimation, i.e. computation of m death rates for each bin. It is noteworthy that
the number of intervals (i.e. the size of δ) is immaterial and it does not modify the final µ̂,
as long as m is selected sufficiently large to capture all important features in the data. Here
we use δ = 0.05 which corresponds to 20 intervals each year of age, a hj every 18.25 days.

The shape of the hazard when λ → ∞ will be a polynomial sequence of degree d at the
log-mortality (η) level. Here, we decide to present results for both d = 1 and d = 2 and
hence, for really large lambda, we would obtain either a constant or a gompertzian force of
mortality over age, respectively. In other words, the choice of d could be interpreted as a
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prior idea of the underlying force of mortality when no additional information and data are
provided.

The advantage of this penalized approach lies also in the fact that we can tune the whole
model by changing λ only. In the following the smoothing parameter will be selected by
minimizing the Akaike Information Criterion (AIC) which, at the cost of wiggling estimated
hazard, will not oversmooth important features in the data. For a given λ the AIC is com-
puted as follows:

AIC = DEV + 2ED (11)

where the deviance DEV = 2
∑

j yj ln(yj/µ̂j) measures the goodness-of-fit in the model and

the effective dimension is ED = tr[(Ê+λD′D)−1Ê]. The minimum of the AIC is found by
a grid-search over a wide range of possible λ.

Since we are in a regression Poisson setting, diagnostics and measures of uncertainty are
easily obtained in the proposed penalized hazard estimation. Specifically, the covariance
matrix of the estimated log-mortality, η, (for fixed λ) is given by

Cη = (Ê + λD′D)−1 . (12)

The covariance of the fitted hazard µ = eη follows as diag(eη̂)Cη diag(eη̂). The square
root of the diagonal of this last matrix provides the standard errors for the estimated hazard
which are then used to construct the associated confidence intervals.

Alternative and more complex approaches for obtaining a smooth estimation of the force
of mortality have been tested. For instance, we combined penalties of first and second order
as in Eilers and Goeman (2004) to merge Exponential and Gompertz models in the penalty
term, and we adopted an adaptive smoother as in Wood (2006) and Krivobokova et al. (2008)
allowing for varying smoothness over age. Outcomes from these methods are substantially
equal to the proposed penalized approach in terms of fitted hazard and associated confidence
intervals.

3 Plateau, or not plateau, is that the question?

In the following we will present two simulation studies. First we simulate lifetimes from a
Gompertz distribution and we test if and when, by changing sample size and true parameters,
we are able to discriminate between the true underlying model and the simpler constant haz-
ard model. Then we will show nonparametric estimations of the hazard for various datasets,
again generated from a Gompertz model.

3.1 Discriminating Constant and Gompertz hazard

For simulating lifetimes from a Gompertz distribution as in (5), we need to select both
sample size (N), starting level of mortality (a) and rate-of-aging (b). Since our focus is on
the significance of the b parameter, we take only four possible a = (0.5, 0.6, 0.7, 0.8). However,
the range of these values contains all possible starting levels of mortality currently estimated
at age 105 (Barbi et al., 2018b; Dang et al., 2019; Gampe, 2010; Gavrilova and Gavrilov,
2011; Rau et al., 2017) and more than 70% of the rates at 105 provided at aggregate level in
the Human Mortality Database (2019) for all countries in the last 50 available years.

Rate-of-aging in a Gompertz distribution measures the relative derivative with respect to
age of the force of mortality. Effects of a small change in b is very large in the final mortality
age-pattern, especially in small population (Witten and Satzer, 1992). However, the marginal
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effect of b on the probability of being selected is linear in terms of percentage changes. There-
fore we used a detailed series of true b and in a log-scale: log b = (−2,−1.95,−1.9, . . . ,−1).
These values correspond to an unequal-spaced series from 0.01 to 0.1. Figure 1 shows all
underlying mortality age-patterns assumed in our simulation study. We cover a wide range
of possible trajectories, i.e. all combinations of high/low mortality levels with slow/fast mor-
tality changes over age.

age

ha
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rd

105 110 115 120 125

0.5

0.75

1

1.5

2

3

4

5

6

a=0.5

a=0.6

a=0.7
a=0.8

b=0.1

b=0.01

Figure 1: A schematic overview of all possible underlying mortality age-patterns used in the
simulation study.

Sample size is another critical aspect in our context. Hence we simulate using a detailed
series of N . Specifically we will have datasets with N = (1, 2, 3, . . . , 20)× 103. We show that
we can hardly conclude from our smallest N , and the largest value (20,000) is more than the
total number of observations currently available in the International Database on Longevity
(2019, IDL).

For all combinations of 20 possible N , 4 different starting levels of mortality and 21
b, we simulate 500 datasets. This implies that we simulate 840,000 independent datasets.
For each dataset, we estimate both Exponential and Gompertz distribution and we test via a
likelihood ratio if we could have rejected the null hypothesis (a mortality plateau). We use 5%
as significance level of the test. In other words, for a given set of (N, a, b), we asses 500 times
whether we could have retrieved the true underlying Gompertz distribution, or alternatively
a simpler constant hazard would have been selected by the classic likelihood-ratio test.

To better acknowledge the effect of specific observation schemes, we compare outcomes
from fully observed lifetimes with those obtained with right censored and left truncated
observations. Specifically, we assume a constant hazard for time to censoring with rate equal
to ν = 0.1. This hazard produces between 7.3 and 20.6% of right censored observations
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with relatively higher values when the underlying Gompertz hazard is lower. We also assume
L = N/10 left truncated observations with entry times wi uniformly generated between yi/10
and yi/2. Given these censoring and truncation mechanisms, we observe about 80-90% of
the total exposure time we have with fully observed lifetimes.

For comparison, the most updated version of the IDL contains 22% of right censored and
almost 99% of left truncated observations. Moreover, among the about 19,000 observations
in the IDL above age 105, we have 78% of right truncated and less than 1% interval censored
lifetimes. Another comparison with observed censoring and truncation mechanisms can be
taken from Barbi et al. (2018b). They analyzed 3,836 individuals 105 and older with 33%
right censored and 12% left truncated cases. As consequence, in our simulated datasets, we
observe a larger number of details than we could detect in the most accurate mortality data
for people at advanced ages.

Figure 2 presents the distributions of p-values for two instances of (N, a, b)-combinations,
with and without fully observed lifetimes (top and bottom panels, respectively). If we have
a dataset of 3,000 fully observed individuals with a level of mortality at 105 of 0.6 and an
underlying rate-of-aging equal to 0.014, only 24.2% of the 500 simulated datasets are selected
as Gompertz by the likelihood-ratio test with a significance level of 5% (top left panel). With
larger sample size (N = 5, 000) and a higher Gompertz parameters (a = 0.7, b = 0.02),
this percentage increases up to 48.9% (top right panel). In both cases, we are below 50%:
more then half of the times, we would not reject the hypothesis that b is equal to zero and
consequently opt for a more parsimonious model, that is a mortality plateau.

Bottom panels in Figure 2 presents the same (N, a, b)-combinations, but right censoring
and left truncation are incorporated in the simulation. Here the percentages are very low:
in more than 95% of the 500 datasets a likelihood-ratio test will guide toward a constant
mortality risk of dying. Cumulative distributions of the p-values depicted by the monotoni-
cally increasing lines in Figure 2 show how these percentages would change if the significance
level varies. As expected, a smaller significance level (e.g. 1%) in discriminating between
Gompertz and Exponential would produce lower percentages: a constant mortality pattern
would be selected more often.

For all different model specifications we compute the percentages the true underlying
Gompertz model is selected. Figure 3 and 4 present shaded-contour plots of these percentages
when we consider fully observed lifetimes and censoring/truncation, respectively. In both
figures, the four panels present 4 different starting level of mortality (a) adopted in the study.
Sample size (N) and rate-of-aging (b) are on the horizontal and vertical axes, respectively.
The color key drawn alongside the plot describes all possible percentages obtained in the
study.

Regardless the values of the triplet (N, a, b), the true underlying model is a Gompertz.
However, the relatively large areas of Figure 3 and 4 depicted by dark colors reveal that
oftentimes we would select a simpler Exponential model, i.e. a mortality plateau. These
percentages highly depends upon the values of (N, a, b). A higher starting level of mortality
leads to lower probability to select the true Gompertz model. The higher the mortality at
age 105, the fewer observations survive at older ages. Consequently, fewer observations will
be available to properly estimate the underlying positive rate-of-aging.

Differently, larger values of b in the true hazard and a more numerous population are as-
sociated with higher chances to select the underlying Gompertz distribution, a held constant.
The likelihood-ratio test will often reject the hypothesis of b = 0 if data were simulated with
a relatively high rate-of-aging. The role of the sample size is obvious: a larger N helps to
select the true underlying Gompertz model.
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Figure 2: (Cumulative) Distribution of p-values from 500 datasets obtained by likelihood-
ratio test on the hypothesis b = 0. Top panels: fully observed lifetimes. Bottom panels:
right censored and left truncation is included. Two different combinations of sample size and
Gompertz parameters for generating observed lifetimes are used. Vertical red lines depict
significance level selected for this study (5%) and the associated text presents the percentage
of correctly selected Gompertz at that level.

Figure 4 is more explicit about the difficulty in discriminating between a Gompertz hazard
and a mortality plateau. When lifetimes are not fully observed for censoring and truncation
mechanisms, the odds of retrieving the true underlying Gompertz model are really low. For
instance, if we take sample size and Gompertz parameters close to those presenting in Barbi
et al. (2018b), (N, a, b) = (4000, 0.7, 0.141), a likelihood-ratio test at 5% significance level
would not reject the hypothesis b = 0 only 4.6% of the 500 simulated datasets.

Slight reverse trends in the percentages are visible in the lower parts of the panels in
Figure 4. This is mainly due to the constant hazard for time to censoring which penalizes
more datasets with smaller sample sizes. However, with a relatively higher underlying rate-
of-aging, the number of censoring and truncated individuals decreases. Hence, trends in
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Figure 3: Percentage of correctly selected Gompertz by likelihood-ratio test with significance
level 5% among 500 simulated datasets, by different sample size and true Gompertz param-
eters. Fully observed lifetimes. Contour lines of the associated theoretical highest attained
age are superimposed.

proportion of correctly detected models become monotonically increasing after a certain level
of b which depends upon sample size and starting level of mortality a.

In addition to the percentages of correctly selected model, Figures 3 and 4 present another
layer of information: we included contour lines of the theoretical highest attained age, ω,
for any combination of the triplet (N, a, b). Following Thatcher (1999), we consider ω as
the extreme value of a sample of size N , drawn from a Gompertz distribution with known
parameters a and b. Consequently, the highest attained age has a probability distribution
and we portrayed in Figures 3 and 4 the isolines of the modal values of this distribution,
i.e. the most probable highest age in which there is only one survivor among the starting N .

Theoretical highest attained age and knowledge about observed longevity records in his-
tory helps in dismissing possible simulated scenarios as implausible. For instance, by assum-
ing Jeanne Calment as the oldest person ever with a lifespan of 122 years and 164 days, and
by considering the 19,000 IDL cases as a complete database of people older than 105, it is
unreasonable to admit a Gompertz distribution with starting level of mortality higher than
0.5 and with a rate-of-aging above 0.015.

A second illustration could be based on age 117 which has been outlived by the majority
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Figure 4: Percentage of correctly selected Gompertz by likelihood-ratio test with signifi-
cance level 5% among 500 simulated datasets, by different sample size and true Gompertz
parameters. Right censoring and left truncated observations. Contour lines of the associated
theoretical highest attained age are superimposed.

of the top-ten verified oldest supercentenarians. In this case, a Gompertz distribution with
a = 0.8 seems highly implausible. Similarly, scenarios with a = 0.5 and N > 5, 000 are
reasonable only when the rate-of-aging is below 0.06/0.07. If mortality at age 105 is 0.6
(0.7), we can admit as plausible only rate-of-aging below 0.04 (0.025). As expected, for a
given a, the highest admissible b is quickly decreasing when the sample size gets smaller,
e.g. for a = 0.7 and 20,000 observations above age 105, we could expect the actually observed
supercentenarians when b ≤ 0.0251, if N decreases to 8,000 a reasonable rate-of-aging should
be smaller than 0.01.

Whereas both percentage of correctly selected Gompertz and highest attained age in-
creases with N , these two phenomena behave differently with respect to the Gompertz pa-
rameters. Consequently, the (N, a, b)-combinations which are implausible by looking at the
observed oldest people in the world corresponds to scenarios with high probability of selecting
the underlying model. In other words, we may be able to clearly discriminate a Gompertz dis-
tribution from a mortality plateau only when the true Gompertz hazard is highly improbable,
given the historical and verified longevity records.

For illustrative purposes Table 1 presents the percentages of datasets which will be selected
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Table 1: Percentage of correctly selected Gompertz by likelihood-ratio test with significance
level 5% among 500 simulated datasets from a Gompertz distribution with sample size N =
19, 000, fully observed lifetimes and observations with right censoring and left truncation. The
last four columns present the theoretical highest attained age associated to the Gompertz
parameters with sample size N = 19, 000. The sample size N is about the overall number of
observations available in IDL.

Fully obs lifetimes Right Cens + Left Trunc Highest attained age
H
HHH

HHb
a

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

0.0100 78.8 61.6 51.8 34.8 7.0 10.8 17.2 24.6 123.0 120.2 118.2 116.6
0.0112 82.6 70.6 55.4 47.6 5.4 9.4 15.4 14.4 122.8 120.1 118.1 116.5
0.0126 91.2 82.4 68.4 57.4 4.4 6.2 9.6 12.0 122.6 119.9 118.0 116.4
0.0141 95.6 88.6 75.0 66.8 4.2 5.2 5.8 10.0 122.4 119.8 117.8 116.4
0.0158 99.4 93.4 87.0 76.6 9.4 4.8 6.0 7.0 122.1 119.6 117.7 116.2
0.0178 99.8 97.4 93.4 80.6 15.6 8.8 5.0 6.2 121.9 119.4 117.6 116.1
0.0200 99.8 99.8 96.4 91.4 26.2 16.0 7.0 4.6 121.6 119.2 117.4 116.0
0.0224 100.0 100.0 99.0 96.6 44.4 22.0 11.6 5.0 121.3 119.0 117.2 115.9
0.0251 100.0 100.0 100.0 98.4 62.8 34.6 22.6 14.0 121.0 118.7 117.1 115.7
0.0282 100.0 100.0 100.0 99.8 82.4 61.2 37.4 18.6 120.7 118.5 116.9 115.6
0.0316 100.0 100.0 100.0 100.0 93.8 78.4 55.0 34.8 120.3 118.2 116.6 115.4
0.0355 100.0 100.0 100.0 100.0 98.4 90.2 78.2 54.6 119.9 117.9 116.4 115.2
0.0398 100.0 100.0 100.0 100.0 99.8 98.4 91.4 76.2 119.5 117.6 116.2 115.0
0.0447 100.0 100.0 100.0 100.0 100.0 99.8 91.4 76.2 119.1 117.3 115.9 114.8
0.0501 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.6 118.7 117.0 115.7 114.6
0.0562 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 118.3 116.6 115.4 114.4

correctly as generating by a Gompertz distribution for a sample sizeN = 19, 000, as a function
of a and b. We show this value of N since it is close to the total number of cases over 105 in the
IDL. Again keep in mind that these percentages represents outcomes in either an ideal world
(with fully observed lifetimes) or in relatively favorable conditions (with about 85% of the
underlying lifetimes observed): much smaller values would be obtained with heavy truncation
and censoring mechanisms, frequent in actual datasets. The last columns present the highest
attained age expected for N = 19, 000 and the corresponding Gompertz parameters.

3.2 Describing mortality age-pattern without functional assump-
tions

In this section, we will present the estimated hazards from a non-parametric approach by
which no assumption is made on the functional form of the underlying force of mortality.
Instead of simulating 500 times all (N, a, b)-triplets, we will present 3 case-studies. Given a
parameter combination, we randomly select a dataset with both fully and partially observed
simulated lifetimes. Equal conclusions might be drawn by selecting any of the alternative
500 simulated datasets within the same combination of parameters. As order of differences
in the penalty term, we adopted both d = 1 and d = 2.

From the previous simulation setting, we chose instances with different percentages of
correctly selected Gompertz model. Specifically, we take the following three combinations
of (N, a, b): (20000, 0.5, 0.0708), (10000, 0.6, 0.0178) and (3000, 0.8, 0.0112), corresponding to
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100, 82.4 and 12.2% of datasets which are selected correctly as generating by a Gompertz
distribution, when we assume to observe all lifetimes from 105 to death. When censoring
and truncation mechanisms are included in the simulation settings, the same triplets lead to
100, 7.2 and 5% probability to correctly detect the true underlying Gompertz distribution.
Moreover the highest attained ages for these sets of parameters are 117.4, 118.6 and 114.3
years.

Figure 5 presents the outcomes of this second simulation study. Left (right) panels present
the true and smooth hazards when we assume fully (partially) observed lifetimes. From top
to bottom panels, we have simulation setting from which we obtain a decreasing probability
to correctly select a Gompertz distribution when it would be opposed to a mortality plateau.
Along the hazards, gray bars identify distributions of deaths in each bin j. Right y-axes
present the associated values. This additional information helps to better acknowledge the
different simulation settings in terms of generated distributions as well as the expected rare
observations in its right-tail. As consequence, in all instances, confidence intervals of the
estimated smooth hazards tend to increase over age.

In estimating a smooth hazard by a penalized likelihood approach, choice about the order
of differences in the penalty term is necessary (cf. Section 2.2). Whereas this decision is
irrelevant when we model large sample size (Eilers and Marx, 2010), it become essential in
our context. With few information from data, large smoothing parameter λ will be selected
and consequently a plateau (Gompertz) mortality will be estimated when the penalty term
is constructed with first (second) order of difference. This is an obvious outcome of any
non-parametric approach: we search for an optimum between goodness-of-fit and parsimony
in the estimated hazard. Hence, when few information is provided by the data, prior beliefs
increase their importance in the final outcomes. In a penalized likelihood approach these
beliefs are expressed by the order of difference in the penalty term.

Instead of selecting a certain order of difference, we present estimated smooth hazards
in both cases. Figure 5 shows estimated smooth hazard for both d = 1 (in red) and d = 2
(in green). When we deal with a relatively large sample size (top panels), both procedures
produce similar results up to about age 111. With fewer individuals the age in which esti-
mated hazards from d = 1 and d = 2 diverge tend to decrease. However for all cases the 95%
confidence intervals of the estimated hazards with d = 1 are mainly within the corresponding
interval when we use d = 2, especially at the highest ages.

Confidence intervals allow us to gauge the ages in which a gompertzian hazard is distin-
guishable from a mortality plateau. Specifically, in top panels and in left-central panel, a
Gompertz model with an increasing risk of dying seems identifiable before age 110, afterward
and in all other settings and regardless the age, it will be impossible to differentiate between
the two models, i.e. confidence intervals for estimated hazards with both first and second
order of differences in the penalty term always contain a constant trajectory in the risk of
dying.

At a glance we obtain seemingly oversmooth estimated trajectories above certain ages
and/or when dealing with relatively small sample datasets. This is neither a consequence of
the proposed penalized approach nor of the Akaike Information Criterion employed to select
the amount of smoothness. On the contrary, the smoothing parameter selected by AIC tends
to overfit our data. As example see the top panels of Figure 5 when sufficient information is
provided by the data: smooth estimated hazards will pick up non-linear mortality patterns
which are solely due to random fluctuations since data are simulated by a simpler Gompertz
model.

When estimation is based on fully observed individuals (left panels), true underlying

14



Dra
ft.

Do
no

t cir
cu

la
te

or
cit

e

Camarda: The curse of the mortality plateau

fo
rc

e 
of

 m
or

ta
lit

y

age
106 108 110 112 114 116

0

1

2

3

Fully obs lifetimes
N=20000, a=0.5, b=0.0708 − ω=117.4 yrsCorrectly selected: 100%

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

0

100

200

300

400

500

de
at

hs

age
106 108 110 112 114 116

Right cens + Left trunc
Correctly selected: 100%

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

fo
rc

e 
of

 m
or

ta
lit

y

age
106 108 110 112 114 116 118

0.5

0.6

0.7

0.8

0.9

N=10000, a=0.6, b=0.0178 − ω=118.6 yrsCorrectly selected: 82.4%

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

0

50

100

150

200

250

300

de
at

hs

age
106 108 110 112 114 116 118

Correctly selected: 7.2%

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

fo
rc

e 
of

 m
or

ta
lit

y

age
106 108 110 112 114

0.7

0.8

0.9

1.0

1.1

N=3000, a=0.8, b=0.0112 − ω=114.3 yrsCorrectly selected: 12.2%

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

0

20

40

60

80

100

120

de
at

hs

age
106 108 110 112 114

Correctly selected: 5%

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

True hazard
Smooth hazard + 95% CI, d=1
Smooth hazard + 95% CI, d=2

Figure 5: Non-parametric estimated hazard for three datasets with different sample size
and true Gompertz parameters. Left (right) panels present simulation settings in which
we assume fully (partially) observed lifetimes. Highest attained ages, ω, associated to each
(N, a, b)-triplets as well as the percentages of correctly selected Gompertz from the previous
simulation study are also displayed.
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hazard (blue line) has higher chances to be include within the 95% confidence interval of
the estimated hazards. Differences in mortality age-patterns estimated from either fully or
partially observed lifetimes are mainly evident at the edge of the age ranges: left truncation
and right censoring mechanisms lead to less accuracy in the estimation at early and later ages,
respectively. See for instance how confidence intervals in the right panel tends to decrease
just above age 105.

4 Conclusions

In recent years, the attempt to understand mortality at extreme ages have prompted a
plethora of controversial studies. However, none of them have attempted to evaluate the
statistical foundations of any analysis in which few individuals are available and experience
exceptionally high risk of dying. In this paper we tackle the question from an alternative
perspective: rather than providing an estimation of mortality age-pattern using actual data,
we set up a rigorous simulation study. This approach allows us to disentangle all aspects
behind a reliable estimation and it provides solid bases for evaluating when and what it can
be accurately known when one faces the problem of mortality analysis at extreme ages.

Most of the current debate is about the existence of a mortality plateau after age 105 as
opposite to a continuous increase, commonly described by a Gompertz model. We present
two analyzes in which we generate individual lifetimes from a true underlying Gompertz
distribution. In the first part we assess when we can really discriminate between a Gompertz
hazard and a mortality plateau. As a second step, we free our estimated hazards from any
functional form and we describe simulated data by a non-parametric approach. This allows us
to comprehend up to which age we are able to clearly recognize a specific mortality pattern.

Different Gompertz parameters and sample sizes are considered to produce possible sce-
narios. We adopted a range of mortality patterns which largely includes estimated trajectories
from previous studies and current populations. Meanwhile corresponding highest attained
ages are juxtaposed to test plausibility of the simulated settings. Moreover, we perform
our study on both fully and partially observed lifetimes, simulating eventual censoring and
truncation times, too.

A model describing a mortality plateau is nested in a Gompertz hazard, therefore a con-
ventional likelihood-ratio tests can be used to either accept or reject the additional Gompertz
parameter. We performed this test on 500 simulated datasets for each parameters combi-
nation and for both fully and partially observed individual lifetimes. We clearly show that
a relatively high percentage of correctly selected Gompertz model can be obtained only in
combination of large sample sizes or high value of the true underlying Gompertz rate-of-
aging. Whereas we could envisage and work to obtain larger datasets in the future, high
rate-of-aging has never been observed in mortality data at very high ages, also considering
the high starting level of mortality at age 105, i.e. death rates above 0.5.

A more discouraged outlook is obtained when lifetimes are assumed to be only partially
observed, phenomenon very common in actual data. Specifically, we show that chance to
identify a Gompertz instead of a mortality plateau when the true model is a Gompertz dra-
matically decreases when censoring and truncation mechanisms are included. Finally, most of
the combinations of Gompertz parameters and sample sizes in which we could eventually have
more than 50% probability to correctly identify a Gompertz correspond to implausible scenar-
ios: the associated theoretical highest attained ages have been overcame by well-documented
examples of oldest humans.
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Moving from a dichotomous (plateau vs. Gompertz) to a broader framework, we gener-
alized the Piecewise constant hazard model to estimate smooth mortality age-patterns. Free
from any parametric structure, this approach allows us to characterize accurately the force
of mortality and to monitor at which age a relatively complex pattern can be identified.
Outcomes on relevant simulated case-studies show that only with the selected largest sample
size (20,000) and up to age 110, we would be able to pinpoint a gompertzian trajectory. For
higher ages and smaller sample size, confidence interval associated to the smooth hazard will
always include a mortality plateau. Also in this setting, the presence of right censored and
left truncated observations reduces the possibility to recognize mortality age-patterns more
complex than a constant hazard.

In conclusion, we could rephrase Heisenberg’s uncertainty principle for longevity studies:
the more precisely the age-pattern of a population is determined, the less probable is its
existence, and vice versa. Well, at least in our current world.
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