
1 

 

A Cointegration Analysis of Population Aging 

By Gustavo De Santis and Giambattista Salinari 

Abstract 

While “classical” demography imputes population ageing to low fertility, a recent “revisionist” line 

of thinking signals the emergence of an ageing “from the top” (i.e., due to low mortality), starting 

slightly after World War II. We join this debate with two contributions. On the one hand, we try to 

assess and put in perspective the way counterfactual analysis has generally been used in this domain. 

On the other, we show that, in the long run, mortality impacts on the population age structure, and on 

ageing, more that it is customarily believed. With data taken from the Human Mortality Database 

(HMD) on 13 populations located in Europe, North America and Oceania, we show that a 

cointegration relationship exists between the actual age structure in year t and what we call the 

reference age structure, that is the age structure of the stationary population associated with the period 

life table of year t. This means that most of the change observed in the proportion of young, adult and 

old people in these countries can be derived solely from the change in survival, ignoring fertility and 

migration, and this for a very long time interval, dating back to as much as the data allows, up to two 

centuries. 
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1. Introduction 

Classical demography imputes population ageing to low fertility, not to low mortality (Coale 1956; 

Keyfitz 1975). When mortality is very high, its decline may even lead to population rejuvenation: this 

actually happened at the beginning of the demographic transition, characterized by a strong reduction 

in infant and child mortality (Coale 1972; Chesnais 1990, 1992). However, even leaving this extreme 

case aside, Coale’s (1957) famous counterfactual analysis showed that, had fertility remained 

constant, the age structure of Sweden would have been practically the same in 1860 as in 1950. 

Bengtsson and Scott (2005, 2010) updated the exercise to the period 1900 to 2000, and confirmed 

that, with unchanged fertility, the proportion of people aged 65 and over in Sweden would have been 

almost the same. In both cases, contrary to intuition, huge changes in mortality proved of very small 

consequence on the population age structure. 

Recently, things have slightly changed: improvements in survival are concentrated at older ages 

(Vaupel 2010), and a sort of “ageing from the top”, due to more and more people surviving to old and 

very old ages, has emerged (Preston et al. 1989; Caselli and Vallin 1990; Preston and Stokes 2012). 

Some “revisionist” scholars, as Lee and Zhou (2017) call them, have therefore challenged the idea 

that fertility is always the major driver of population ageing. Murphy (2017), for instance, shows that 

mortality has been the most important determinant of population ageing in 11 European countries in 

the past 65 years or so. However, the idea of an ageing process “from the top” remains controversial: 

Lee and Zhou (2017), for instance, on the basis of their own counterfactual analysis, contend that 

even in “modern” populations, low fertility remains the main cause of population ageing. 

We join this debate with two main contributions. On the one hand, we try to assess and put in 

perspective the way counterfactual analysis has been used in this domain, suggesting a possible 

alternative. On the other, we show that, in the long run, mortality impacts on the population age 

structure, and on ageing, more that it has customarily been acknowledged until now. 
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As for the first point, counterfactual analysis is a more delicate instrument than it is commonly 

believed to be. Scholars nowadays prefer to place counterfactuals within the larger frame of causal 

analysis, which means that they must be based on a “functional causal model” and inserted into a 

system of (structural) equations describing the relationships between the variables of interest (Pearl 

et al. 2016). “Processing counterfactuals is the hardest task [in causal analysis] because it requires 

some information about the functional relationships and/or the distribution of the omitted factors” 

(Pearl 2009:38). 

A closer inspection of the counterfactual analyses usually conducted in this field of research, starting 

from the first (Coale 1957), reveals that an essential (if only tacitly introduced) assumption is that the 

main components of population dynamics – mortality, fertility and migration – are independent of 

each other. Indeed, there is no formal connection between them, and, in simulations, each of them is 

allowed to vary freely, without affecting the other components, which, typically, are assumed to 

remain constant, or to follow the path they actually followed (but in a totally different demographic 

context). 

However, populations where mortality, fertility and migration are independent of each other do not 

seem to have ever existed. Davis (1963), for instance, conjectured that fertility decline was caused by 

mortality decline and that a positive long-run relationship between mortality and fertility 

characterized the entire demographic transition (see also Galloway, Lee and Hammel 1998; Billari 

and Dalla Zuanna 2013). If this assumption holds, mortality can influence the age structure of a 

population in two different ways: directly, because a change in mortality translates into a change in 

the age structure, everything else equal; and indirectly, because a change in mortality causes a change 

in fertility (and migration), and this, in turn, affects the age structure.  

We will not be able to distinguish between the two paths, but we will show that mortality is, in the 

long run, a good predictor of population ageing (and, more generally, of the age structure of a 

population). To do this we will use period life tables, which, as we will show shortly, prove useful in 

this type of application, even if some scholars question their validity as indicators of the “true” 

evolution of survival, and prefer cohort life tables (e.g., Borgan and Keilman 2019).  

Our analysis has, admittedly, a few technically difficult passages (due to the notion of cointegration: 

see section 2), but it essence is trivial: we will try to prove that the reference age structure (in our 

terminology, the proportion of individuals of age x in the stationary population associated with the 

period life table of year t) “attracts” the current (actual) age structure of a population, and that this 

small, but persistent force of attraction eventually prevails, and shapes the age structures as we see 

them. In practice, we will try to prove that, knowing the reference age structure, one can predict the 

evolution of the actual (current or future) age structure of a population.  

Note that three outcomes of our analysis are possible. The first is that our predicting capacity proves 

limited. In this case, the overall effect of mortality (or, at least, of period mortality) on the age 

structure is arguably small and the classical result of demographic analysis holds: fertility decline, 

not mortality, is the main driver of population ageing. The second possibility is that our prediction 

becomes good only after a certain, relatively recent, date, e.g. 1950: this will lend support to the 

“revisionist approach”, that is to the hypothesis of an ageing process “from the top” that emerged 

only recently, but that did not operate before. Finally, the third possibility is that a large part of the 

age structure dynamics can be explained by the evolution of survival (as described by a succession 

of period life tables), and this in all the countries under scrutiny (13, see below) and for the entire 

period of observation (the last two centuries or so). 
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We will try to convince our readers that our results point in this direction (period life tables “explain” 

a large part of observable population age structures) and argue that this finding may call for a 

reassessment of the relative importance of mortality among the drivers of population aging. 

The paper is organized in four remaining sections. The next section will be devoted to the formal 

description of the test that we will use in the paper. The third section will present the data and some 

descriptive statistics. The fourth session will present the results. The last session will be devoted to a 

discussion of our findings. 

2. Testing Cointegration between the Actual and the Reference Age-Structure 

In the following, we will indicate with 𝐶𝑥,𝑡 the actual age structure, i.e., the proportion of individuals 

of age x in year t: 

 𝐶𝑥,𝑡 =
𝑃𝑥,𝑡

𝑃𝑡
,  (1) 

where 𝑃𝑥,𝑡 and 𝑃𝑡 stand for the population of age x and the total population in year t, respectively. 

Similarly, the reference age structure of the population (i.e., the age structure of the current stationary 

population) will be defined as: 

 𝐾𝑥,𝑡 =
𝐿𝑥,𝑡

∑ 𝐿𝑥,𝑡𝑥
 (2) 

where 𝐿𝑥,𝑡 indicates the person-years lived at age x in the life table of year t. Let 𝑘𝑥,𝑡 and 𝑐𝑥,𝑡 denote 

the log transformation of 𝐾𝑥,𝑡 and 𝐶𝑥,𝑡, respectively. The log-transformation has two main purposes: 

it circumvents one of the limitations of proportions (they are bounded in the 0-1 interval, with the 

lower limit, 0, particularly disturbing), and it helps to better approximate linearity in the relationship 

between the two series, cx,t and kx,t.
1 

The main goal of this paper is to test the existence of a cointegration relationship between 𝑐𝑥,𝑡 and 

𝑘𝑥,𝑡 (see Section 2.1 for the details). To do this, two different strategies can be followed. The first, a 

more classic approach, is to focus on a specific couple of series (𝑐𝑎,𝑡 and 𝑘𝑎,𝑡, for a specific age a and 

various years t), and test whether these two are cointegrated. The second strategy is to pool together 

all the series 𝑐𝑥,𝑡 and 𝑘𝑥,𝑡, at all available ages x and years t, and perform what is known as a “panel 

cointegration test”. As both lines of research have their pros and cons, we decided to try them both. 

The essential elements to understand these two tests are described in the next two sub-sections.2 

2.1 Time series approach to cointegration  

If we focus on a single couple of 𝑐𝑎,𝑡 and 𝑘𝑎,𝑡 (for a specific and constant age a, and for several years 

t), the question is whether a long-run (cointegration) relationship exists between them, of the type: 

 𝑐𝑎,𝑡 = 𝑚 + 𝛾𝑘𝑎,𝑡 + 𝜀𝑡,  (3) 

where 𝑚 and 𝛾 are the model coefficients and 𝜀𝑡 is the error term. Unfortunately, in this case standard 

regression methods cannot be used, because of the possibility of spurious correlations (Granger and 

 
1 With other types of transformation (e.g., Box-Cox’s lambda; Wei 2006:83), or with no transformation at all, the results 

(not shown here) do not differ in any substantial way from those presented in this paper, but the relationship between the 

two series cx,t and kx,t becomes slightly worse (“less linear”), and the “noise” stronger. 
2 The next two sub-sections are based on three textbooks on econometrics modelling: Box, Jenkins, Reinsel and Ljung 

(2016); Jonston and DiNardo (1996); Pesaran (2015). 
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Newbold 1974). Indeed, if both 𝑐𝑎,𝑡 and 𝑘𝑎,𝑡 are non-stationary (their means, variances or 

autocovariances depend on time), as they actually are in the populations under scrutiny (see Section 

3), even if the two series are independent of each other they may seem to move together (spurious 

correlation). For this reason, in classical cointegration analysis the test for cointegration is based on 

the residuals of Eq. 3, and not on its coefficients (Engle and Granger’s 1987). If the residuals turn out 

to be stationary (their mean, variance and covariance are independent of time), a long-run relationship 

between the two series is likely to exist. This test is usually performed with the Augmented Dickey-

Fuller (ADF) unit root test, although other solutions are also possible. To understand the rationale of 

this approach, let us define �̂�𝑎,𝑡 = 𝑚 + 𝛾𝑘𝑎,𝑡 as the log-proportion of individuals of age a in year t 

predicted by Eq. 3 on the basis of the reference age structure (better: of the reference log-proportion 

of individuals of age a in year t). If the actual and the reference age structure are cointegrated, the 

actual log-proportion of individuals aged a, 𝑐𝑎,𝑡, will show a tendency to “revert” to its long-run 

equilibrium value �̂�𝑎,𝑡. In practice, cointegration means that 𝑐𝑎,𝑡 and �̂�𝑎,𝑡 cannot be too far away from 

each other, because some “force” pushes 𝑐𝑎,𝑡 towards �̂�𝑎,𝑡. The residual-based cointegration test 

proposed by Engle and Granger aims to detect this (possible) “force”. Unfortunately, the test used to 

check whether time series are, or are not, stationary typically suffers from a low statistical power, and 

may prove inconclusive. Therefore, other approaches have been proposed, and in the following we 

will use one of them, the so-called “bounds test” (Pesaran et al. 2001). The general idea behind this 

approach is to test the “reversion towards the long-run equilibrium” (i.e., the “force” we mentioned 

earlier) by estimating the following (so-called “conditional”) error correction model (ECM): 

 ∆𝑐𝑎,𝑡 = 𝛼0 +𝛿1𝑐𝑎,𝑡−1 + 𝛿2𝑘𝑎,𝑡−1 + ∑ 𝛼𝑖∆𝑐𝑎,𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖∆𝑘𝑎,𝑡−𝑖

𝑞
𝑖=0 + 𝜀𝑡, (4) 

where 𝛼𝑖, β𝑖 and 𝛿i are the model parameters, ∆𝑐𝑎,𝑡 = 𝑐𝑎,𝑡 − 𝑐𝑎,𝑡−1, ∆𝑘𝑎,𝑡 = 𝑘𝑎,𝑡 − 𝑘𝑎,𝑡−1, and p and 

q are lags, to be discussed shortly. 

Eq. 4 presents several advantages. First, this model can be estimated with ordinary least squares 

(OLS).3 Second, the lags p and q do not need to be predetermined: a statistical procedure, based on 

the BIC (Bayesian information criterion) will suggest the best combination of the two. Third, the 

parameters of Eq. 3 can be derived from those of Eq. 4, because: 

 𝑚 =
𝛼0

−𝛿1
  and   𝛾 =

𝛿2

−𝛿1
. (5) 

Fourth, the existence of a cointegration relationship between 𝑐𝑎,𝑡 and 𝑘𝑎,𝑡 can be tested with the F 

statistics on the null hypothesis 𝐻0: 𝛿1 = 𝛿2 = 0. The distribution of this statistic is non-standard, but 

its critical values, calculated with Monte Carlo simulations, are tabulated in Pesaran et al. (2001, 

Table CI(iii)). These critical values are generally greater than those employed in the standard F test, 

which makes the rejection of the null hypothesis (of no cointegration) more difficult. For any given 

significance level, Pesaran et al. (2015) propose two critical values, 𝐹𝑈 (upper) and 𝐹𝐿 (lower – this 

explains the name “bounds test”), which means that three possible outcomes are possible: 

1) 𝐹 > 𝐹𝑈 signals the likely existence of a long-run relationship; 

2) 𝐹 < 𝐹𝐿indicates that the long-run relationship is unlikely to exist; and 

3) 𝐹𝐿 < 𝐹 < 𝐹𝑈 leads to a “suspension verdict”: the inference is inconclusive (Pesaran 2015:526). 

 
3 To estimate Eq. 4 we used the dynlm R package. 
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If 𝑐𝑎,𝑡 and 𝑘𝑎,𝑡 are cointegrated, one can estimate Eq. 3 with OLS and use the 𝑘𝑎,𝑡 series and the 

estimated coefficients to predict the evolution of 𝑐𝑎,𝑡. The proportion of the overall 𝑐𝑎,𝑡 variance 

explained by the 𝑘𝑎,𝑡 series is gauged, as usual, by the 𝑅2 statistics of the regression model. 

Although higher than in the two-step procedure of Engle and Granger (1987), the statistical power of 

the bounds test remains relatively low, especially if the series are “disturbed”, e.g. by wars or 

epidemics. This is why we resorted also to the “panel cointegration test”, rapidly described in the next 

sub-section. 

2.2 Testing Cointegration in Panel Data 

As both the current and the reference age structure can vary across age and time, our dataset presents 

a panel structure. In panel terminology, ages 𝑥 ∈ {0, 1, . . . , 𝑋} represent the “individuals”, whereas 

calendar years 𝑡 ∈ {1, 2, … , 𝑇} represent the time dimension.  Our dataset can therefore be thought of 

as a set of 2X time series (cx,t and kx,t), of length T, pooled together. To test for cointegration in this 

case, one needs to estimate the model: 

 𝑐𝑥,𝑡 = 𝑚𝑥 + 𝛾𝑥𝑘𝑥,𝑡 + 𝜀𝑥,𝑡 ∀𝑥. (6) 

As in Eq. 3, if the series 𝑐𝑥,𝑡 and 𝑘𝑥,𝑡 are non-stationary, a spurious correlation between the two can 

bias the estimate, and, once again, an analysis of the model residuals is necessary. If the residuals turn 

out to be stationary, the hypothesis of a “true” (non-spurious) linear association between the two 

series is probably tenable. 

To ascertain this, we adopted a two-step procedure. First, we ran the IPS (Im, Pesaran and Shin 2003) 

panel unit root test on the 𝑐𝑥,𝑡 and the 𝑘𝑥,𝑡 series to verify their non-stationarity,4 an essential 

precondition for cointegration to exist. Next, we estimated model (6) with OLS and, on the residuals 

of this model, we ran another IPS test.5 If the actual (c) and the reference (k) age structures are 

cointegrated, these residuals must be stationary. 

The IPS test is a so-called “first generation” panel unit root test (Pesaran 2015:817), which relies on 

the critical assumption that the time series within the panel (cx,t or kx,t) are cross-sectionally 

independently distributed. For this reason, we also checked for possible cross-sectional disturbances 

by performing a so-called “second generation” panel cointegration test. 6 

3. The Data 

For our analysis, we used data taken from the Human Mortality Database7 (HMD) on 13 populations 

located in Europe, North America and Oceania (Table 1). We used data on exposures to calculate the 

actual proportions of individuals of age x in year t (𝐶𝑥,𝑡), and period life tables to compute their 

reference counterpart, i.e. the proportions of life-years at age x out of the total (𝐾𝑥,𝑡). We focused on 

the ages between 0 and 99 years, by five-year age classes (0-4; 5-9; ...; 95-99). 

 
4 If the series are stationary, virtually all of the problems discussed in this methodological section disappear, and the 

estimation procedure can be done very simply, for instance with OLS. This, however, is not our case (see Section 2). 
5 We estimated the model with the pvcm function, and we ran the unit root test with the purtest function, of the plm R 

package. 
6 We first estimated model (6) with the Common Correlated Effects Mean Group Estimator (CCEMG) and then, on the 

residuals of this model, we computed the CIPS test (Cross-sectionally augmented IPS, Pesaran 2007), following the 

example given by Pesaran (2015 p. 844). Our software, also in this case, is the plm R package, with its pmg and cipstest 

functions.  
7 Last accessed in June 2019. 
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The countries covered by our analysis have time series of varying lengths. Typically, European 

populations have series that date back to the 19th century, or even before (Swedish data, for instance, 

date back to the 18th century). However, we decided to start in 1820, or as early as possible after that, 

because older data are generally considered less reliable. In non-European countries, the series start 

typically between 1910 and 1930. 

The age structures of our populations changed considerably over time. The mean age, for instance 

increased from about 25-26 to about 38-39 years, while the mean age of the corresponding reference 

populations (i.e., the stationary populations associated with the current period life tables) passed from 

30-33 to 39-40 years (Table 1). The box plots of Fig. 1 show that the relative weights of the youngest 

and the oldest age groups in Sweden8 changed considerably in the last two centuries (in both the 

actual and the reference population), while the relative weight of the central age groups varied very 

little. The limited variability of our “independent” variable 𝑘𝑥,𝑡 reduces the explanatory power of the 

ECM (Eq. 4). In practice, however, this is less problematic that it seems, because in these central ages 

also the dependent variable 𝑐𝑥,𝑡 displays very limited variability (Fig. 1b). 

One of the difficulties that our analysis must face is represented by mortality crises: e.g., the cholera 

epidemics of the 19th century, the Spanish flue epidemics of 1918 and the two world wars of the 20th 

century. These sudden discontinuities may introduce several forms of distortion. The most 

problematic are probably those linked to the ups and downs of fertility, which induce “waves” in the 

age structure 𝐶𝑥,𝑡 (but not in the reference age structure 𝐾𝑥,𝑡, our independent variable) of the 

subsequent 100 years or so. This reduces the explanatory power of our model, which, however 

remains high, as we will see shortly. 

Another factor to keep under control is linearity, which is assumed in our two fundamental equations 

(3 and 6), but which may not exist in practice. However, this does not seem to be the case, as Fig. 2a 

shows for all the countries, age classes and years of our dataset. Actually, a closer look at Fig. 2a 

reveals a small, but significant slope change in the passage to older ages (above 60 years; see also 

Figures 2b and 2c), and, besides, more refined statistical analyses (not shown here) indicate that there 

is a slight (but statistically significant) convexity above 60 years, and a concavity below this age. All 

in all, however, the diagnostics of our ECM model (Eq. 4) reveals that these modest departures from 

linearity do not influence the “general picture” that emerges from our analysis.  

  

 
8 In this paper, we will systematically use Sweden as an example, which we preferred over others because it has the 

longest time series of data. The other countries or regions, not shown here for reasons of space, behave similarly. 
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Table 1 Summary statistics 

   Mean age of populations 

  Time range of series (years) Actual  Reference  

Country Code Start End Length Start End Start End 

Australia AUS 1921 2016 96 27.8 38.1 35.5 42.1 

Canada CAN 1921 2016 96 26.7 40.3 35.7 41.9 

Denmark DNK 1835 2016 182 27.1 40.7 31.5 41.1 

England&Wales ENW 1841 2016 176 25.5 40.0 31.7 41.3 

Finland FIN 1878 2015 138 26.2 41.7 31.8 41.4 

France FRA 1820 2016 197 28.3 40.8 31.4 42.0 

Netherland NLD 1850 2016 167 27.0 41.0 31.8 41.4 

New Zealand NZD 1901 2008 108 25.7 38.2 34.8 41.3 

Norway NOR 1846 2014 169 27.1 39.0 33.6 41.6 

Scotland SCO 1855 2016 162 25.9 41.2 31.8 40.4 

Sweden SWE 1820 2017 198 27.4 40.7 31.3 41.7 

Switzerland CHE 1876 2016 141 28.1 41.5 30.7 42.3 

United States USA 1933 2017 85 29.6 38.7 35.0 40.7 

Note: in the longer country codes of the HMD ENW=GBRCENW; FRA=FRACNP; NZD= 

NZL_NM; SCO=GBR_SCO 

Source: Human Mortality database (last accessed in June 2019) 
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Fig. 1 Variability of kx [ln(Kx)] and cx [ln(Cx)] by five-year age classes in Sweden (1820-2017) 

a) 

 

b) 
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Fig. 2 Relationship between kx [ln(Kx)] and cx [ln(Cx)] (all the countries and years of Table 1)  

a) All ages 

 

b) Ages 60 and over 

 

c) Ages below 60 

 

Source: See Table 1. 
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4. Results 

Let us first present the results of the cointegration tests performed with the “time series” approach of 

section 2.1, i.e. considering separately each couple 𝑐𝑎,𝑡 and 𝑘𝑎,𝑡. We did this for each of the thirteen 

countries of Table 1, and for 20 quinquennial age groups x (0-4, 5-9, …, 95-99). To determine the 

best p and q (lags) of our ECM (Eq. 4) we started from a 3x4 grid search. In practice, we estimated 

each model 12 times, with different combinations of p = 1, …, 3 and q=0, …, 3 (with quinquennial 

data, i.e., we are considering lags of up to 5x3=15 years). In most cases, the best model (with the 

lowest BIC value) has p=1 (82% of the cases) and q=0 (78% of the cases). On this, we ran the Pesaran 

et al. (2001) bounds test with a significance level of 0.1. To sum things up, we ran 13x20 = 260 tests 

based on the estimation of 260x12 = 3640 ECMs. The main results are summarized in Table 2. 

Let us first consider its first row: the existence of a long-run relationship between the 𝑐𝑎,𝑡, and the 

𝑘𝑎,𝑡 series (a=0, 1, ..., 19) is deemed likely in 154 cases (60% of the total), unlikely in 89 cases (34%) 

and uncertain in the remaining 17 cases (6%). 

Breaking down the outcome of our tests by country (Fig. 3a), we find that in five of them (Australia, 

Canada, Norway, Sweden and the US) a long-run relationship emerges very frequently, in more than 

75% of the age groups considered. At the opposite extreme, two countries (Netherlands and Denmark) 

perform very poorly, with a long-run relationship that can be identified in less than 30% of the age 

groups. Four of the five best performing countries (Australia, Canada, Sweden and the US) were 

comparatively less affected by the two world wars: this suggests that sudden mortality (and fertility) 

crises, with their long lasting “wave” effects on the age structure, may negatively affect the 

relationship between the two series, ca,t and ka,t.  

 

Table 2 Summary of results on the relationship between ca,t and ka,t (all the countries and years of Table 1) 

  A long-run relationship between 𝒄𝒂,𝒕 and 𝒌𝒂,𝒕series 

Data N tests 
Likely 

exists 

Likely 

does not exist 
Unresolved % Existence 

Whole dataset 260 154 89 17 59.2 

After diagnostics 175 109 54 12 62.3 

After diagnostics and 

excluding age groups 

45-59 years 

146 94 41 11 64.4 
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Fig. 3 Results by country  

a. Bounds test  

 

 

b. Model diagnostic 

 

Note: there are 20 (5-year age group) series for each country, where, however, they are observed for 

a different number of years (see Table 1). 

Source: see Table 1  
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To assess the reliability of our tests, we performed three kinds of diagnostic on the models residuals: 

1) The Box-Pierce test of autocorrelation (Box and Peirce 1970); 

2) The Shapiro-Wilk test of normality (Royston 1982) and; 

3) The score test for non-constant error variance (eteroskedasticity; Cook and Weisberg 1983). 

Luckily, problem number 1 (correlation between the residuals) affects only seven of our estimates 

(out of 260). Therefore, in Fig. 3b we ignored it and focused only on the remaining problems: non-

normality or eteroskedasticity, or both.  

Note that the five “best” countries (where the existence of a cointegration relationship appears to be 

more frequent) are also those where the models diagnostic performs better. Three regions instead – 

France, Netherland and Scotland – prove to be particularly problematic, both in terms of non-

normality and eteroskedasticity.  

If we remove the “problematic” cases from our dataset (those with autocorrelation, non-normality or 

eteroskedasticity), we are left with 175 “well-behaving” time series: on this subset, a long-run 

relationship can be identified in 62.3 % of the cases (Table 2, second row). 

Let us now break down our results by age-group. What emerges is a complex pattern (Fig. 4a). In the 

age range between 15 and 44 years a cointegration relationship can be found in most of the series 

scrutinized. Furthermore, a cointegration relationship can be found in more than 50% of the cases 

between 55 and 74 years, and over 85 years. Conversely, in the remaining age classes (0-14, 45-54, 

and 75-89) the proportion of cointegrated series generally drops below 50%.  

The central age groups, 45-49, 50-54 and 55-59 present a comparatively smaller variability of the 𝑘𝑥,𝑡 

series (see Fig. 1) which translates into a smaller explanatory power of the ECM at these ages. Indeed, 

the median R2 of these models9 drops to about 30% for the central age groups (Fig. 4b), while it is 

(well) above 40% for the others.  If we exclude them from our analysis (Table 2, row 3), the proportion 

of time series where a long-run relationship can be detected rises to 64.4%. 

As for the age classes 75-89, the low proportion of “successful” cointegration may depend on the 

high noisiness of the mortality series at these ages, especially in past populations, which is the reason 

why the HMD staff decided to smooth the life tables starting from age 80 (see the “full protocol” of 

the HMD). Finally, it is more difficult to explain why the proportion of cointegrated series drops in 

the first age groups, up to 15 years. In this case, too, the problem may be linked to the noisiness of 

the series, but we cannot prove this conjecture.10  

 
9 The proportion of explained variance of the ECM models (Eq. 4) should not be confused with the explained variance of 

the cointegration relationship (Eq. 3): in the former the dependent variable is ∆𝑐𝑎,𝑡, whereas in the latter the dependent 

variable is 𝑐𝑎,𝑡.  
10 We also tried to split the first age group, 0-4 in the two sub-groups 0-1 and 1-4 (not shown here), but the proportion of 

cointegrated series detected by our tests raises only marginally. 
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Fig. 4 Results by five-year age groups (indicated by their central point) for the 13 countries of Table 

1 

a. Bounds test  

 

b. Median R2 (explained variance) of the ECMs by age-group 

 

Source: See Table 1 
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Let us try to summarize our findings, thus far. Once the data have been purged of the “worst” series 

(those with the most evident statistical problems), a long-run relationship between ca,t and ka,t can be 

detected in slightly less than two thirds of the cases (down to 56%, if we use the more demanding 

significance level of 0.05). We take this as a first, admittedly not decisive, indication in favor of the 

hypothesis that the actual and the reference age structure are cointegrated, especially if we consider 

the several disturbing factors that we could not keep under control (e.g. data quality, wars, and the 

typically low statistical power of cointegration tests). 

To improve the statistical power of our tests we performed also a panel cointegration analysis (based 

on Eq. 6) on the entire age structure of the population (Table 3). The first four columns of Table 3 

report the P values of the panel unit root test on our 𝑐𝑥,𝑡 and 𝑘𝑥,𝑡 series. These tests have been 

performed both via the IPS test (which does not take into account the effect of cross-sectional 

dependence) and via the CIPS test (which, instead, does). The IPS test supports (better: does not 

reject) the null hypothesis of non-stationarity in all cases except one (the 𝑘𝑥,𝑡 of New Zealand). The 

CIPS test, instead, supports the null hypothesis of non-stationarity in all cases, without exceptions. 

As for the analysis of residuals, the IPS test rejects the null hypothesis of non-stationarity in all cases 

except Netherland (P value of 0.08), which, incidentally, is in agreement with the previous analysis 

of the bounds (Netherland was the country with the lowest proportion of cointegrated single couple 

of series; see Fig. 3a). However, even for Netherland, the CIPS test finds that the actual age structure 

cx,t is cointegrated with the reference age structure kx,t.  

Summing things up, according to the IPS test, a cointegration relationship between the actual and the 

reference age structure can be identified in 11 out of the 13 countries analyzed; according to the CIPS 

test, this is true in all of them. 

The results of Table 3 indicate that a set of age-specific linear functions (Eq. 3) likely connects the 

long-run dynamic of the actual age structure with the dynamic of the reference age structure, which 

implies, among other things, that the former can be predicted if one knows (or imagines) the evolution 

of the latter. 

Fig. 5 shows the median R2 value associated with the estimate of Eq. 3 at different ages in all the 

countries covered in this analysis. This figure shows that between 25 and 54 years the evolution of 

the age structure cannot be accurately predicted from the evolution of mortality. As we remarked 

earlier, however, this is not much of a problem, because the variability of  𝑐𝑥,𝑡 is very limited here, 

which means that there is almost nothing to predict. Where instead the changes in the age structure 

of the population are more important, at younger and older ages, the part of the variance that our 

model can “explain” becomes substantial: about 75% in the first quinquennial age groups and well 

above this value at 60 years and over. And this, totally ignoring what happened to fertility and 

migration. 
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Table 3 Panel cointegration analysis (all the countries and years of Table 1) 

Country IPS 𝒄𝒙,𝒕 

P value 

IPS 𝒌𝒙,𝒕 

P value 

CIPS 𝒄𝒙,𝒕 

P value 

CIPS 𝒌𝒙,𝒕 

P value 

IPS residuals 

P value 

CIPS residuals 

P value 

Australia 1 0.30 >0.1 >0.1 <0.01 <0.01 

Canada 1 0.95 >0.1 >0.1 <0.01 <0.01 

Denmark 1 1 >0.1 >0.1 <0.01 <0.01 

England & Wales 1 1 >0.1 >0.1 <0.01 <0.01 

Finland 1 1 >0.1 >0.1 <0.01 <0.01 

France 1 0.97 >0.1 >0.1 <0.01 <0.01 

Netherland 1 1 >0.1 >0.1 0.08 <0.01 

Norway 1 0.98 >0.1 >0.1 <0.01 <0.01 

New Zealand 1 0.02 >0.1 >0.1 <0.01 <0.01 

Scotland 1 1 >0.1 >0.1 <0.01 <0.01 

Sweden 1 1 >0.1 >0.1 <0.01 <0.01 

Switzerland 1 1 >0.1 >0.1 <0.01 <0.01 

United States 1 1 >0.1 >0.1 <0.01 <0.01 

Note: The table reports the P value of the IPS and CIPS tests. In the first four columns, we test the null hypothesis that 

the 𝑐𝑥,𝑡 and the 𝑘𝑥,𝑡 are non-stationary. If these series are cointegrated, the test must not reject the null hypothesis (P 

value > 0.1). In the last two columns, we test the null hypothesis that the residuals of Eq. 6 are non-stationary. If the 

series are cointegrated, the test must reject the non-stationarity hypothesis (P value < 0.1). In the IPS test we set the 

maximum number of lags to 3 times unit (15 years in the present case). In the CIPS test the lag order of the Dickey-Fuller 

augmentation has been set to 2. 

Source: See Table 1. 

Fig. 6 presents the predicted proportions of individual of age x according to our linear equations in 

Sweden over the period 1820-2017 (mind the different scales on the y-axis). In this figure the red, 

solid line represents the evolution of the actual proportion of individuals of age x (𝐶𝑥,𝑡), the blue 

dotted line represents the evolution of 𝐾𝑥,𝑡, while the orange-dashed line represents the prediction of 

this proportion (�̂�𝑥,𝑡) based on the 𝐾𝑥,𝑡 series and on the estimates of the age-specific parameters of 

Table 4. Our predictions are able to capture remarkably well the general evolution of the Swedish age 

structure in the last two hundred years, basically because the general trends observed in the 𝐾𝑥,𝑡 

(“reference”) series are mirrored in the evolution of the 𝐶𝑥,𝑡 (actual) series. Of course, we cannot 

accurately depict the fluctuations around this general trend, which depend on the legacy on the age 

structure of events such as wars, epidemics and baby booms and busts.  

Fig. 6, and Fig. 7 below, show that the connection between the actual C and the predicted �̂� values 

dates back to very long ago. In other words, the connection between survival (period life tables) and 

the shape of the age structure (which includes population ageing) seems to predate not only the strong 

improvement in mortality (which materialized after the 1950s; Murphy 2017), but also the onset of 

the demographic transition, which in Sweden started slightly after 1860. 

Fig. 7 shows how accurately the entire age structure of a population at very different epochs can be 

reconstituted on the basis of the reference age structure (and, importantly, ignoring fertility and 

migration). This open the way to several empirical applications. For instance, the estimated age-

specific cointegration relationships (Table 4) can be applied to mortality forecasts, e.g. of the Lee-

Carter type (Lee and Carter 1992; Lee and Miller 2001) to predict the entire age structure. 
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In Table 4 we show the estimates at different ages of the parameters of Eq. 3 (“Eq. 3-unrestricted”) 

that have been employed to produce the predictions of Figures 6 and 7 along with their standard errors 

and the associated R2. In this table we also present the estimates of Eq. 3 without intercept, which can 

be employed to assess how close in the long run the actual proportion of individuals of age x is to its 

reference counterpart. Finally, the last three columns of Table 4 show the mean squared errors (MSE) 

of our unrestricted model (Eq. 3), for the model with the intercept set to 0 and for the restricted model 

with zero intercept and unitary slope. The general idea behind this exercise is to assess how close, on 

average, the actual age structure is to its reference counterpart. 

 

 

Fig. 5 Median R2 (explained variance) of Eq. 3 by five-year age groups (all the countries and years 

of Table 1) 

 

Note: The points represent the median explained variance of Eq. 3 by age group (all countries). The 

shaded area indicates the 95% band. 
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Table 4 Parameters estimates by age for Sweden (Eq. 3, restricted and unrestricted versions) 

 Type A Type B Type A Type B Type C 

Age Intercept SE Slope SE R2 Slope SE MSE MSE MSE 

0 2.497 0.292 1.909 0.111 0.917 0.937 0.111 0.008 0.033 0.059 

5 2.451 0.518 1.887 0.193 0.859 0.946 0.193 0.009 0.023 0.042 

10 2.209 0.6 1.796 0.223 0.809 0.952 0.223 0.010 0.018 0.034 

15 1.698 0.543 1.603 0.202 0.754 0.958 0.202 0.009 0.013 0.026 

20 0.16 0.438 1.030 0.165 0.542 0.969 0.165 0.007 0.007 0.014 

25 -0.969 0.281 0.617 0.105 0.248 0.981 0.105 0.007 0.008 0.010 

30 -2.007 0.300 0.247 0.110 0.028 0.993 0.110 0.008 0.010 0.010 

35 -3.894 0.309 -0.429 0.112 0.037 1.005 0.112 0.009 0.013 0.014 

40 -6.25 2.433 -1.259 0.882 0.078 1.016 0.882 0.013 0.016 0.018 

45 4.907 4.375 2.793 1.589 0.169 1.030 1.589 0.017 0.018 0.025 

50 5.833 0.916 3.103 0.318 0.595 1.045 0.318 0.012 0.020 0.036 

55 3.697 0.996 2.334 0.340 0.740 1.060 0.340 0.012 0.021 0.052 

60 2.255 0.832 1.824 0.275 0.789 1.072 0.275 0.014 0.022 0.069 

65 1.583 0.645 1.590 0.203 0.844 1.087 0.203 0.017 0.026 0.100 

70 0.882 0.543 1.359 0.160 0.881 1.098 0.160 0.020 0.025 0.134 

75 0.451 0.468 1.227 0.126 0.916 1.107 0.126 0.024 0.026 0.186 

80 0.105 0.428 1.130 0.101 0.936 1.106 0.101 0.031 0.031 0.239 

85 -0.049 0.431 1.095 0.087 0.955 1.105 0.087 0.038 0.038 0.337 

90 -0.327 0.458 1.049 0.075 0.962 1.098 0.075 0.055 0.058 0.478 

95 -0.972 0.689 0.975 0.086 0.941 1.087 0.086 0.123 0.149 0.699 

Note: type A=Eq. 3, unrestricted; type B=Eq. 3 restricted, with intercept=0; type C= Eq. 3 restricted, 

with intercept=0 and slope=1  



18 

 

Fig. 6 Actual (red, solid line), reference (blue, dotted line) and predicted (orange, dashed line) 

proportion of individuals in selected age-groups (Sweden, 1820-2017) 

 

  



19 

 

Fig. 7 Actual (red, solid line), reference (blue, dotted line) and predicted (orange, dashed line) 

proportion of individuals in selected epochs 
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The twice-restricted version of Eq. 3 (no intercept, unitary slope) basically shows that the reference 

proportion of individuals of age x is generally close to the actual proportion (Kx,t~ Cx,t; see also Fig. 

7). The worsening of the approximation (as measured, e.g., with the MSE) is not dramatic, while the 

interpretation is much simpler: as a first approximation, the age structure of the reference population 

in year t gives an idea of the actual age structure of that population in year t. At younger ages (<30) 

the actual proportion of individuals tends to be slightly higher than in its reference proportion, while 

at older ages (>55), the actual proportion is slightly lower (5-10%): this is normal in a population 

with a four-fold increased (from 2.5 million in 1820 to more than 10 million in 2018). Not 

surprisingly, this small distortion disappears altogether in recent times (last panel of Fig. 7), when the 

effects of the demographic transition are over. 

5. Conclusions 

In this paper, we presented an empirical finding. For 13 countries, we collected evidence that supports 

the conjecture that the evolution of the age structure of their population is cointegrated with the 

evolution of their “reference” counterpart, i.e., the age structure of the stationary population 

associated with the period life table. This means that most of the change observed in the proportion 

of young, adult and old people in these countries can be derived from (and, we submit, depend on) 

the change in survival, and this for a very long time interval, dating back to as much as possible, with 

the available data. The correlation is not spurious (i.e., due to common stochastic trends) and is rather 

strong (with the exception of the central ages, whose variability is very limited, however). A 

simplified version of this finding (which emerges when the intercept of the regression is forced to 

zero and the slope to one) is that the reference age structure Kx,t may constitute an acceptable 

approximation of the actual age structure Cx,t. These results are obtained ignoring fertility and 

migration altogether: this suggests that survival, both directly and indirectly (e.g. acting through 

changes in fertility and migration) is an important driver of the changes in population age structure 

and therefore also of aging. 

Murphy (2017) had already found that since mid-20th century, most of the evolution of the age 

structure in 11 European countries depended on the evolution of mortality. He could not go back in 

time for more than a century, because of the data requirements of his technique (the PHE 

decomposition; Preston, Himes and Eggers 1989). But we could: our method, less data demanding, 

allowed us to go much back in time, up to almost two centuries in the case of Sweden and France, for 

instance. 

Our findings, as well as those of Murphy, complement rather than contradicting the traditional 

conclusion of “classical” demography, based on simulations. It is true that, if mortality and fertility 

were independent of each other, fertility would impact on the age structure more (possibly, much 

more) than mortality. However, the assumption may not hold: fertility (and migration) tend to adapt 

to the evolution of societies and, in particular, to the evolution of survival, to the point that, knowing 

survival (i.e., period life tables), one can safely predict the shape of the population pyramid, even if 

this is (heavily) dependent on fertility and migration. This happens, we tentatively submit, precisely 

because fertility and mortality, in the medium-long run, “adapt” to what survival dictates - or at least 

have done so in the past 200 years or so for the countries for which we have good data. 
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