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Abstract

Having better educated adult children is associated with living longer

and being healthier. Yet, causal tests of this association are still rare.

Using the Health and Retirement Study (HRS), we propose a novel, in-

tergenerational Mendelian Randomization approach (IGMR) to investi-

gate the causal relationship between the education of HRS respondents

and their parents’ longevity. We are able to show that children’s edu-

cation is indeed associated with greater longevity for parents. When we

instrument the endogenous education variable using genetic dispositions

for educational attainment conditional on parental education and genetic

predispositions for various health outcomes, the education effect remains

strong and statistically significant for mothers, suggesting a causal effect

of children’s education on parental health in the US. We discuss substan-

tive implications of our findings and investigate potential limitations of

our new approach, including biological pleiotropy and family size.

∗This study has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program under grant agreement
no. 681546 (FAMSIZEMATTERS).
The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging
(grant number NIA U01AG009740) and is conducted by the University of Michigan.
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Introduction

Parents with better-educated adult children are healthier and live longer, a

well-established recent finding that has become know as the ‘social foreground’

hypothesis (Torssander, 2013). But is parental health and longevity a conse-

quence of children’s education, or do healthier parents pass on traits to their

children that are beneficial for the children’s education? A recent review article

established that this research area is understudied and particularly causal evi-

dence is needed (De Neve and Kawachi, 2017). Potential pathways for a causal

effect are that better-educated children are better able to help their parents

navigate the health care system or provide better care, better support their

parents economically, might induce better health behaviors in their parents, or

might cause their parents less stress. Yet, it might also be that parents who live

longer might have passed on traits to their children that are also beneficial to

the children’s education. Such an endogenous pathway would be in line with

an association between adult children’s education and parental longevity, yet

would have completely different implications, e.g. for policymakers interested in

potential benefits of investing in children’s education.

Existing studies on the causal relationship make use of schooling reforms and

reach mixed results. Particularly for the US, causal evidence is still lacking. Our

study addresses the causal dimension of a children’s education–parental mortal-

ity link with a innovative, genetically informed approach. Using data from the

Health and Retirement Study (HRS) and a novel Intergenerational Mendelian

Randomization (IGMR) approach, we examine in how far the spillover effect

from children’s education to parental longevity can be seen as causal.

Previous research

The evidence for an association between children’s education and parental health

and longevity is strong (Brooke et al., 2017; De Neve and Harling, 2017; Elo

et al., 2018; Friedman and Mare, 2014; Jiang, 2019; Lee, 2018; Lee et al.,

2017; Meyer et al., 2019; Sabater and Graham, 2016a,b; Sabater et al., 2019;

Torssander, 2013, 2014; Wolfe et al., 2018a,b; Yahirun et al., 2016, 2017, 2019;

Yang et al., 2016; Zimmer et al., 2016, 2002, 2007), covering a wide range of

health outcomes (including self-reports, biomarkers, and mortality) and stem-

ming from a wide range of societies (ranging from rural South Africa to the US

and Nordic welfare states).

Evidence for a causal effect of children’s education on parental health is

mixed. A number of studies support the notion of an intergenerational spillover

effect. One mechanism might be economic support provided by better-educated

children to their parents. For instance, a study of Tanzanian data exploited

quasi-experimental variation created by an educational reform, showing that
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the reform increased educational attainment by more than a year and reduced

parental mortality risks (De Neve and Fink, 2018). Another mechanism might

be that better-educated children are better able to help parents navigate the

health care system. A Swedish study found that parents with higher educated

adult children live longer when comparing adult children who were cousins

(Torssander, 2013), thus being able to account for a number of unobserved

traits passed from parents to children.

But not all studies yield results as clear-cut as those. A Swedish study of

an educational reform suggested that a reduced mortality risk can only be for

fathers with daughters affected by the reform (Lundborg and Majlesi, 2018). A

Chinese study showed that parents of children affected by an educational reform

show improved cognition and lung functioning, but no effects on grip strength,

self-rated health, or mental health (Ma, 2019).

Another pathway linking children’s education and parental health might

be endogenous. Parents who live longer might have passed on traits to their

children that are also beneficial to the children’s education. An English study

of an educational reform, which showed that parents of children affected by the

reform did not live longer or report better health (Potente et al., 2019), would

be in line with this endogenous pathway.

Data and methods

Data: Health and Retirement Study

The Health and Retirement Study (HRS, Sonnega et al., 2014) is a long-running

panel study of the older US population. Between 2006 and 2012, the HRS col-

lected genetic (saliva) samples from approximately 84% of participants under-

going face-to-face interviews. These DNA samples were genotyped for about

two million SNPs. Further, the data include information on adult children’s

education and parental longevity, making it the ideal resource for our research

endeavor. Indeed, Friedman and Mare (2014) used HRS data to show that

children’s education is associated with parental mortality.

We restrict the data to non-Hispanic white respondents who were genotyped

and for whom the key variables of interest were observed. White here refers

to respondents who self-identify as white and who fall within one standard

deviation of all self-identified whites for eigenvectors 1 and 2 in the PCA of

all unrelated study subjects. Specifically, we make use of the RAND HRS

Longitudinal file (Bugliari et al., 2019), which we merge with the HRS genetic

data (Ware et al., 2018).

Our key predictor is the respondents’ schooling measured in years. We con-

trol for parental education, respondents’ sex, birth cohort, and respondents’ num-

ber of siblings. Descriptive statistics are reported in Table 1. Our outcome
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variable, parental survival, is shown in Figure 1.

Table 1: Descriptive statistics

Prop./Mean SD Min. Max.

Father’s avg. age at death 72.73 13.65 20 105
Father deceased 0.94 0 1
Mother’s avg. age at death 77.72 13.93 21 106
Mother deceased 0.86 0 1
Child’s education (in y.) 13.47 2.45 0 17
Father’s education:

Less than high school 0.53 0 1
High school diploma 0.29 0 1
Some college 0.07 0 1
College+ 0.12 0 1

Mother’s education:
Less than high school 0.46 0 1
High school diploma 0.37 0 1
Some college 0.09 0 1
College+ 0.08 0 1

Female child 0.57 0 1
No. of child’s siblings 2.75 2.15 0 18
Child’s birth cohort:

Born < 1924 0.09 0 1
Born 1925-34 0.21 0 1
Born 1935-44 0.30 0 1
Born 1945-54 0.24 0 1
Born 1955+ 0.15 0 1

N 10,486

Source: HRS (Sonnega et al., 2014), own calculations.

Identification strategy: Mendelian Randomization

Intuition A common approach to identify causal relationships—in contrast

to associations—using non-experimental designs is an instrumental variable ap-

proach (Wooldridge, 2010). An instrumental variable is a variable exogenous to

the outcome, but causal to the predictor variable is used to (quasi-)randomize a

predictor variable. Traditional instruments are policy changes that occur quasi

randomly or the coin flip assigning participants to treatment or control group

in a randomized controlled trial. Recently, genes have become very popular

instrumental variables in epidemiological research under the name of Mendelian

Randomization (MR, Davey Smith and Ebrahim, 2003; Davey Smith and He-

mani, 2014; Pickrell, 2015). Genes are essentially a random draw of the genes

of our parents, thus might be used as intstruments, and MR is now frequently
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Figure 1: Survival curves for respondents’ fathers and mothers, N = 10,355

Source: HRS (Sonnega et al., 2014), own calculations.

implemented in social science research (DiPrete et al., 2018; Sotoudeh et al.,

2019).

Genes as instrumental variables In our study, we combine and extend

two approaches to Mendelian Randomization. First, in network studies, it has

been highlighted that the genes of ego might be useful predictors of behavior

in alter. For instance, genes which predict the smoking behavior of peers also

affect ego’s smoking behavior, pointing towards social contagion effects in smok-

ing (Sotoudeh et al., 2019). We propose to use the Mendelian Randomization

approach for a cross-trait prediction of adult children’s education on parents’

mortality. However, since parents and children share 50% of their segregating

genetic material, we need to take parental education into account and reintro-

duce a challenge known from the classic MR approach, namely, that the same

genes might influence education and mortality (Marioni et al., 2016), also known

as biological pleiotropy.

Since individual genetic effects on social outcomes are known to be substan-

tively small, we accumulate known effects across the whole genome in so-called

polygenic scores, to avoid potential issues with weak instruments. All polygenic

scores were readily available in the HRS data (Ware et al., 2018). Our genetic

instrument is the polygenic score for educational attainment (EA3, Lee et al.,

2018). Further, all models control for the first 10 genetic principal components
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to take population stratification, in particular ancestry-based between-family

differences, which could genetically or environmentally bias results.

Accounting for biological pleiotropy A recent extension of the classic MR

approach (DiPrete et al., 2018) proposes the solution to condition the genetic

effects for education on genetic effects for the outcome under study. Thus, we

condition our genetic variables also on potential pleiotropic effects due to e.g.

heart disease or smoking. Specifically, we further control for the polygenic score

for waist circumference (Shungin et al., 2015), the polygenic score for smoking

(number of cigarettes per day, Tobacco and Genetics Consortium, 2010), the

polygenic score for coronary artery disease (CAD, Schunkert et al., 2011), the

polygenic score for myocardial infarction (The CARDIoGRAMplusC4D Con-

sortium, 2015), and the polygenic score for longevity (Broer et al., 2014).

Instrumental variables in time-to-event models The two-stage least

squares approach (2SLS), commonly used in linear models, replaces the endoge-

nous independent variable, here children’s education, with the value predicted

in the first stage. In the first stage, the endogenous independent variable is

regressed on the instrumental variable. As our outcome was risk of parental

death, we used a survival model to account for right-censoring of the data (Alli-

son, 2014). For time-to-event models, the two-stage residual inclusion approach

(2SRI), which is identical to the 2SLS approach in a linear setting, has been

shown to yield consistent estimates (Terza et al., 2008). Unlike the 2SLS, in the

second stage of the 2SRI regression, both the first-stage residuals, Svi , and the

endogenous variable, Si, are included in the model to be fitted. We estimated

a Cox proportional hazards model for right-censored data (Cox, 1972):

h(t) = h0(t)e(ΣkXkαk+Siρ1+Svi
ρ2+)

where h0(t) is an unspecified baseline hazard function, Gj is child sex, Bj is

child birth order, and Cy is a dummy variable for child cohort y. We controlled

for

All coefficients are hazard ratios, and ρ1 is a consistent estimate for the

true effect of child’s education on parental mortality. Therefore, exp(ρ1) is

the hazard ratio associated with a one-year increase in child’s education. If

exp(ρ1) is smaller than 1 and statistically different from 0, there is a causal

negative relationship between child’s education and parental mortality. The ρ2

is the effect of the first-stage residuals on parental mortality; its interpretation

is equivalent to that of the Wu–Hausman test in a 2SLS framework, wherein

a statistically significant coefficient indicates endogeneity in the relationship

between child’s education and parental mortality.
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Results

Table 2 models parental age at death, for fathers on the left hand side and

mothers on the right hand side. The naive Cox estimates for fathers and for

mothers show that the hazard of dying is almost four per cent lower with each

additional year of children’s schooling. Controlling for education of both parents

reduces this association somewhat, to almost three per cent for fathers and about

three and a half per cent for mothers.

The reduced form models reveal that an increase in the polygenic score for

education (PGS EA3) reduces the hazard of dying not for fathers, only for

mothers. A one-unit increase in the polygenic score for education reduces the

hazard of dying by three per cent, but only for mothers. The F -value of first-

stage model reveals that the polygenic score for education is a strong instrument,

well beyond the rule of thumb of 10. The second stage model for fathers suggests

that there is no causal effect of children’s education on father’s longevity, for

mothers however we find that the hazard of dying is about six per cent lower

with each additional year of the child’s schooling.

Tentative conclusions and future plans

So far, our Mendelian randomization estimates support a causal effect of adult

children’s education on mothers’ longevity. This finding is a major step forward,

as all previous evidence from the US was associational in nature (Friedman and

Mare, 2014; Yahirun et al., 2019).

This finding has important policy implications. If improving education in

a younger generation has positive effects that spill over to an older generation,

education breaks a generational trade-off when policy makers decide what to in-

vest in. Investments in education are not at the expense of the older generation,

as beneficial spillover effects to the older generation exist.

One intriguing aspect of our findings is the gendered dimension of the health

benefits. While children’s education is beneficial for the longevity of mothers,

we can’t find such an effect for fathers. This contradicts the findings from

Lundborg and Majlesi (2018), who were only able to find health benefits for

fathers.

Our future plans for this study comprise the following:

• Stratify our models by sex of the child. Previous research has suggested

that associations differ by the sex of children (e.g. Lundborg and Majlesi,

2018)—our data allow examining this issue further.

• Stratify the model by variables indicating how far children live away from

their parents, how many children parents have, the amount of contact they
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Table 2: Cox regression of parental survival on child’s schooling, hazard ratios
(95 per cent confidence intervals in brackets)

Fathers Mothers

Cox Cox Reduced form 2SRI Cox Cox Reduced form 2SRI

Child’s years of schooling 0.964∗∗∗ 0.971∗∗∗ 0.979 0.960∗∗∗ 0.966∗∗∗ 0.936∗∗

[0.956,0.972] [0.962,0.980] [0.940,1.021] [0.952,0.969] [0.957,0.975] [0.896,0.978]
Mothers’s education (ref. college+)

Less than high school 0.990 1.037 1.009 1.113∗ 1.180∗∗∗ 1.080
[0.901,1.088] [0.944,1.139] [0.901,1.129] [1.009,1.228] [1.069,1.301] [0.960,1.215]

High school diploma 0.988 1.013 0.996 1.096 1.131∗∗ 1.075
[0.905,1.078] [0.928,1.105] [0.906,1.095] [0.999,1.202] [1.031,1.240] [0.972,1.188]

Some college 0.999 1.003 1.004 1.060 1.063 1.067
[0.902,1.106] [0.906,1.111] [0.907,1.112] [0.953,1.180] [0.955,1.183] [0.958,1.188]

Father’s education (ref. college+)
Less than high school 1.202∗∗∗ 1.254∗∗∗ 1.217∗∗∗ 1.082 1.116∗ 1.029

[1.107,1.305] [1.156,1.360] [1.101,1.346] [0.992,1.179] [1.025,1.216] [0.926,1.143]
High school diploma 1.204∗∗∗ 1.240∗∗∗ 1.216∗∗∗ 1.033 1.057 0.997

[1.112,1.303] [1.146,1.342] [1.112,1.330] [0.950,1.124] [0.972,1.150] [0.906,1.096]
Some college 1.056 1.077 1.065 1.075 1.083 1.067

[0.956,1.166] [0.975,1.189] [0.964,1.178] [0.969,1.193] [0.976,1.202] [0.961,1.185]
PGS Education (EA3) 0.990 0.967∗∗

[0.969,1.011] [0.945,0.989]
Daughter (ref. son) 1.040 1.039 1.051∗ 1.044∗ 1.044∗ 1.041 1.051∗ 1.032

[0.999,1.083] [0.997,1.082] [1.009,1.094] [1.000,1.089] [1.001,1.089] [0.998,1.086] [1.008,1.097] [0.987,1.079]
Child birth cohort (ref. born 1935-44)

Born < 1924 1.002 0.984 0.992 0.990 1.055 1.024 1.039 1.030
[0.932,1.078] [0.911,1.062] [0.918,1.071] [0.917,1.069] [0.981,1.135] [0.948,1.106] [0.962,1.122] [0.953,1.112]

Born 1925-34 1.030 1.028 1.035 1.030 1.005 0.998 1.008 0.995
[0.975,1.088] [0.973,1.086] [0.979,1.094] [0.974,1.088] [0.951,1.062] [0.943,1.055] [0.953,1.066] [0.941,1.053]

Born 1945-54 0.909∗∗∗ 0.919∗∗ 0.908∗∗∗ 0.917∗∗ 0.965 0.978 0.965 0.997
[0.861,0.960] [0.869,0.971] [0.859,0.960] [0.865,0.972] [0.911,1.023] [0.923,1.038] [0.910,1.023] [0.937,1.060]

Born 1955+ 0.770∗∗∗ 0.790∗∗∗ 0.782∗∗∗ 0.788∗∗∗ 0.800∗∗∗ 0.823∗∗∗ 0.816∗∗∗ 0.830∗∗∗

[0.719,0.824] [0.737,0.848] [0.729,0.839] [0.734,0.846] [0.739,0.866] [0.759,0.892] [0.752,0.886] [0.765,0.901]
No. of child’s siblings 0.998 0.997 1.001 0.997 0.997 0.996 1.002 0.989

[0.988,1.007] [0.987,1.006] [0.992,1.011] [0.985,1.010] [0.987,1.008] [0.986,1.006] [0.992,1.012] [0.977,1.002]
PGS control variables

Waist circumference 1.017 1.017 1.020 1.021
[0.993,1.041] [0.994,1.041] [0.996,1.046] [0.996,1.046]

Smoking (cigarettes per day) 0.995 0.995 1.024∗ 1.022
[0.974,1.016] [0.974,1.016] [1.001,1.047] [0.999,1.046]

Coronary artery disease 0.985 0.986 0.990 0.991
[0.963,1.007] [0.964,1.008] [0.967,1.013] [0.968,1.014]

Myocardial infarction 1.052∗∗∗ 1.050∗∗∗ 1.040∗∗∗ 1.036∗∗

[1.029,1.076] [1.026,1.074] [1.016,1.065] [1.011,1.061]
Longevity 0.980 0.980 0.993 0.992

[0.956,1.005] [0.956,1.004] [0.968,1.019] [0.967,1.018]
First-stage residuals 0.992 1.035

[0.951,1.035] [0.990,1.082]
First ten principal components No No Yes Yes No No Yes Yes

Observations 10,355 10,355 10,355 10,355 10,355 10,355 10,355 10,355
First-stage F 132.2 132.2

* p < 0.05, ** p < 0.01, *** p < 0.001.
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have with their parents, and whether they provide their parents with help

to investigate the mechanisms underlying the causal effect.

• Explore the effects of conditioning on more or different polygenic scores

to rule out further potential pleiotropic effects.

• As further tests of the effect, we will 1) analyze respondent’s longevity

as a function of their children’s education and instrument the childrens’

education with the polygenic scores of their parents and 2) instrument

children’s education with only the genes which have not been transmitted

from the parent under study.
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