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Introduction 

Coherent forecasting takes the experience of two or more populations into account and 

ensures that the resulting forecasts for each population are ‘non-divergent’, which 

encompasses the conditions that they do not converge (and cross over) in the short term 

nor diverge in the long term (Li and Lee 2005). In recent applications, coherent forecasts 

have been based on the experience of a standard (or external reference population).  

 

The use of an external standard in coherent mortality forecasting can improve the accuracy 

of the forecast, depending on the choice of standard. However, it is by no means clear how 

to choose a priori a standard that will be advantageous. Previously used standards include 

the mortality of the other sex in sex-specific forecasting, the mortality of the national 

population in subnational forecasting, and the mortality of a group of populations (Li and 

Lee 2005, Hyndman, Booth and Yasmeen 2013, Kjærgaard, Canudas-Romo, and Vaupel 

2016, Bergeron-Boucher, Canudas-Romo, Oeppen and Vaupel 2017, Rabbi 2018). 

Booth (forthcoming) found some evidence from sex-coherent forecasts that a low-mortality 

standard is advantageous, and hypothesised that in the context of mortality decline a low-

mortality standard would serve as a good guide to the future. However, results using 

different low-mortality standards are mixed and it is clear that other features of the 

standard play a role. These features have not been identified, though it is likely that 

differing age patterns of decline are involved. 

This paper further develops the use of a low-mortality standard by using forward lagged 

data of the population of interest as the standard. This approach is expected to remove any 

effects arising from differing age patterns of decline and hence produce more accurate 

forecasts. 

Data  

Data are obtained from the Human Mortality Database for the period 1950 to 2014. A total 

of 21 countries are included in the analysis, which is conducted separately for female and 

male mortality in recognition of the different mortality levels and patterns by sex. The data 

comprise annual age-specific central death rates by single years of age (with upper age 

group 95+) and corresponding populations exposed to the risk of death.  

 

 

 

 



Method 

The forecasts are made using the product-ratio coherent method with functional data 

models (Hyndman, Booth and Yasmeen 2013). The functional data model (Hyndman and 

Ullah 2007) is a generalisation of the Lee-Carter model: 

 

  ln(𝑚(𝑥, 𝑡)) = 𝑎(𝑥) + ∑ 𝑏𝑗(𝑥)𝑘𝑗(𝑡)𝑗 +  𝑒(𝑥, 𝑡) +  𝜎(𝑥, 𝑡) 𝜀(𝑥, 𝑡)    (1) 

 

where 𝑎(𝑥) is the temporal average pattern of the logarithm of mortality by age and, for j = 

1,...,J components, 𝑏𝑗(𝑥) is a ‘basis function’ and 𝑘𝑗(𝑡) is a time series coefficient. Broadly, 

the 𝑘𝑗(𝑡) represent annual rates of mortality decline averaged over age, while the 𝑏𝑗(𝑥) 

describe the age pattern of decline averaged over time. The parameters of the model are 

estimated after smoothing the data over age. Thus,  the 𝑎(𝑥) and 𝑏𝑗(𝑥) are smooth 

functions of age. The pairs (𝑏𝑗(𝑥), 𝑘𝑗(𝑡)) for j = 1,...,J are estimated using principal 

component decomposition. The error term  𝜎(𝑥, 𝑡) 𝜀(𝑥, 𝑡) accounts for age-varying 

observational error; this is the difference between the observed rates and the smoothed 

rates. The error term 𝑒(𝑥, 𝑡) is modelling error, or the difference between the smoothed 

rates and the fitted rates from the model. 

 

The product-ratio method for coherent forecasting uses the FDM in jointly forecasting 

mortality for two or more  populations.  The method is described here for sex-coherent 

forecasting. The product function is the geometric mean of sex-specific rates,  𝑝(𝑥, 𝑡) =

√𝑚𝐹(𝑥, 𝑡)𝑚𝑀(𝑥, 𝑡) ,  where F denotes female and M denotes male. The ratio function is the 

square root of the ratio of sex-specific rates,  𝑟(𝑥, 𝑡) =  √𝑚𝐹(𝑥, 𝑡) 𝑚𝑀(𝑥, 𝑡)⁄ .  These 

functions are independently forecast using the FDM (𝑝(𝑥, 𝑡) and 𝑟(𝑥, 𝑡) replacing 𝑚(𝑥, 𝑡) in 

Eq.1). Coherence is achieved by restricting the forecast of the ratio to converge very slowly 

to its temporal average; in other words, the forecast of each time coefficient becomes 

stationary.  

 

The forecasts of the product and ratio functions are combined to produce forecast mortality 

rates. Forecast female mortality is the product of the forecasts of these two functions for 

future 𝑡: 

 √𝑚𝐹(𝑥, 𝑡) 𝑚𝑀(𝑥, 𝑡) .
̂

√𝑚𝐹(𝑥, 𝑡) / 𝑚𝑀(𝑥, 𝑡) 
̂

 =  √𝑚𝐹(𝑥, 𝑡)2̂
= �̂�𝐹(𝑥, 𝑡)     (2) 

 

and forecast male mortality is their ratio: 

 √𝑚𝐹(𝑥, 𝑡) 𝑚𝑀(𝑥, 𝑡) 
̂

 / √𝑚𝐹(𝑥, 𝑡) 𝑚𝑀(𝑥, 𝑡)⁄  
̂

 =  √𝑚𝑀(𝑥, 𝑡)2̂
= �̂�𝑀(𝑥, 𝑡).   (3) 

 

The product-ratio method makes use of the fact that the product and ratio will behave 

roughly independently of each other, as long as the two populations have approximately 

equal mortality variances (Hyndman et al 2013). The method is directly applicable to the 



mortality of any two populations for which the coherence of their future mortality is 

postulated.  

 

In this paper, the two populations are sex-specific observed data for the period ending in 

year 𝑇 − 𝐿, where 𝑇 denotes the last year of observation and 𝐿 denotes lag, and observed 

data for the same sex for the period ending in year 𝑇. The latter is regarded as the standard: 

it leads in time and in mortality decline. The product is thus the geometric mean referring to 

the year 𝑇 − 𝐿/2. The ratio is the square root of the improvement over the lag or L-year 

period, in other words the improvement over L/2 years (assuming constant change over the 

lag). In order to obtain forecast rates referring to the same day within the year (30 June), 

lags of even numbers of years are appropriate. By using Eq. 2, forecast rates are obtained 

referring to years 𝑇 + 1, 𝑇 + 2, etc. This is true for any lag.  

  

The evaluation involves comparing for each sex-country the forecast based on the lagged 

standard with the independent forecast and the sex-coherent forecast.  The forecasts are 

evaluated for individual horizons 1 to 20, using a rolling fitting period in the calculation of 

average error so as to reduce the effect of fluctuation and abrupt change in annual mortality 

rates  in relation to the fitting period and the forecast period. The evaluation of accuracy 

and bias is based on relative errors: respectively, the mean absolute relative error, 𝑀𝐴𝑅𝐸, 

and mean relative error, 𝑀𝑅𝐸, in age-specific mortality rates, averaged over age and fitting 

period. The use of relative errors gives equal weight across ages, regardless of the size of the 

rate.   

The units of analysis for evaluation and comparison are 𝑀𝐴𝑅𝐸(ℎ, 𝑐) and  𝑀𝑅𝐸(ℎ, 𝑐). 

Horizon-specific mean accuracy and bias, 𝑀𝐴𝑅𝐸(ℎ) and 𝑀𝑅𝐸(ℎ), are averages over 

countries. Country-specific mean accuracy and bias, 𝑀𝐴𝑅𝐸(𝑐) and 𝑀𝑅𝐸(𝑐), are averages 

over horizons. Overall mean accuracy and bias, 𝑀𝐴𝑅𝐸 and 𝑀𝑅𝐸, are averages over 

countries and horizons. Standard deviations of the accuracy and bias measures, across 

horizons for each country and across countries for each horizon, are used to assess method 

robustness.  

Results 

Figure 1 shows mean accuracy averaged over age, fitting period and horizon for female 

mortality in the 21 countries by method. Overall means across countries show a reduction in 

MARE from 0.13 to 0.09 when using the lagged method with a lag of 10 years.  Similar 

improvements are found for most measures. The results are summarised in Table 1.  Results 

show that forecast accuracy and bias are generally improved by using a lagged standard 

with lag of 10 years, and that heterogeneity across countries is reduced.  

  



Figure 1  Mean accuracy averaged over horizon for female mortality in the 21 countries by 

method 

 

 

Table 1   Mean and variation in accuracy and bias relative to independent forecasts by 

method, female and male mortality  

  
Indep-

endent 
Sex-

coherent Lag-10 

FEMALE    
Mean accuracy 1.00 1.08 0.70 

SE(accuracy) 1.00 1.18 0.65 

Mean bias  1.00 3.70 1.16 

SE(bias) 1.00 1.27 0.69 

MALE    
Mean accuracy 1.00 0.88 0.68 

SE(accuracy) 1.00 0.77 0.69 

Mean bias  1.00 0.58 0.64 

SE(bias) 1.00 0.64 0.74 

 

Next steps 

Further work on this method is envisaged. It is possible (desirable) to repeat the forecast for 

several lags, averaging the result, thereby potentially increasing accuracy. The effect of lag 

length will also be examined.  
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