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Age exaggeration, other deficiencies of population statistics at old age as well as small 

population numbers preclude extending mortality analysis to advanced old age in many countries. 

Age heaping (Myers, 1993; Shryock & Siegel, 1973) – an indirect sign of problematic data on age 

recording – is prevalent world-wide. Surprisingly, it is observed even in such an advanced data 

collection as the Human Mortality Database (University of California & Max Planck Institute for 

Demographic Research (Rostock), 2019), where about two percent of entries (raw-data population 

distributions by age) show accumulation at ages ending with digit ‘0’, see Figure 1 (Whipple 

(Shryock & Siegel, 1973) index K10 above 105, pane to the left). This proportion is, in fact, an 

underestimate of prevalence of age heaping in the database, because most HMD data refers to 

inter-censal years with heaping shifted to non-round ages. Assuming censuses are carried out once 

in about every decade, the true prevalence of heaping may be up to ten times higher. Indeed, Myers 

(1940) digit preference index exceeds two percent (a critical threshold roughly corresponding, in 

our data, to K10=105) in nine percent of HMD data (Figure 1, pane to the right). Not surprisingly, 

HMD protocol assumes extensive data cleaning and adjustment at ages above age 80 years 

(Wilmoth, Andreev, Jdanov, & Glei, 2007). The age heaping is even more prevalent in data with 

lower quality, such as data for most African countries (Randall & Coast, 2016). 66 percent of 

census data for African countries (United Nations Statistics Division, 2019) are cases with heaping 

index K10 above 105, same proportion show digit preference index above two percent (Figure 2). 

Similar problems apply to many Latin American and Asian populations. 

Age exaggeration is particularly problematic for survival analysis, because it leads to 

apparently elder population age composition, underestimated mortality at old age and 

overestimated life expectancy at all ages. A typical ‘solution’ to this problem is to close the life 

table at relatively young open age interval, so that most of the age exaggeration-related 

redistributions are confined within the open age. Such a truncation of the age scale is a misfortunate 

choice in view of rapidly expanding elderly populations (Robine & Caselli, 2005) and extending 

human lifespan (Ediev, 2011a; Oeppen & Vaupel, 2002; White, 2002).  

Apart from being an obstacle in studying elderly, abridging the life table at oldest-old ages 

leads to another problem: the classical life table relation for the life expectancy in the open age 

interval  

𝑒𝑎 = 𝑀𝑎+
−1,  (1) 

is biased when the age composition of the population deviates from that of the (stationary) life 
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table population (here, 𝑒𝑎 is the remaining life expectancy at age a, 𝑀𝑎+ is the aggregate death rate 

in the open age interval a+). 

 

 
Fig. 1. Distributions of Whipple accumulation index K10 (the pane to the left) and Myers’ digit 

preference index KM (the pane to the right) in HMD data (own calculations based on raw data 

from HMD (University of California & Max Planck Institute for Demographic Research 

(Rostock), 2019)). 

 

 
Fig. 2. Distributions of Whipple accumulation index K10 (the pane to the left) and Myers’ digit 

preference index KM (the pane to the right) in Census data for African countries (own 

calculations based on UN data (United Nations Statistics Division, 2019)). 

 

To mitigate the biasedness of the classical estimate (1), Horiuchi and Coale (Coale, 1985; 

Horiuchi & Coale, 1982) suggested an adjustment procedure that takes into account population 

growth and relies on stable population assumption: 

𝑒𝑎 = 𝑀𝑎+
−1𝑒−𝛽𝑎𝑟𝑀𝑎+

−𝛼𝑎
, (2) 

here, r is the annual growth rate of the population in the open age interval; 𝛼𝑎 and 𝛽𝑎 are the model 

parameters (for numerical values, see (Ediev, 2017; Horiuchi & Coale, 1982)). Mitra (1984, 1985) 



has developed an alternative approximation based on more accurate formal-mathematical account 

of stable population relations but also involving an additional parameter 𝑥̅ that stands for the mean 

age of the population in the open age interval: 

𝑒𝑎 = 𝑀𝑎+
−1𝑒−𝑟[𝑀𝑎+

−1−(1+𝑟𝑀𝑎+
−1)(𝑥̅−𝑎)]. (3) 

Although reliance on the empirical mean population age 𝑥̅ in presence of age exaggeration may 

be questionable (Coale, 1985), this problem may be addressed by discarding the (possibly biased) 

empirical 𝑥̅ and replacing it by the following regression approximation: 

𝑥̅ = 𝐶 + 𝑘1𝑀𝑎+
−1 + 𝑘2𝑟𝑀𝑎+

−1, (4) 

see (Ediev, 2017) for regression (4) parameters and prediction errors. 

A more traditional approach to estimating the death rates and lifespan at old age is 

extrapolating the death rates into the open age interval by a proper mortality model (e.g., Gompertz 

or Kannisto (Gompertz, 1825; Heligman & Pollard, 1980; Missov, Németh, & Dańko, 2016; 

Thatcher, Kannisto, & Vaupel, 1998)) based on their rate of increase at ages below the open age 

interval. Extrapolation might allow for both obtaining an estimate of the remaining life expectancy 

in the open age interval that is not affected by age exaggeration and extending the mortality profile 

into elder ages. 

Comparative empirical analysis of accuracy of the traditional approaches shows that 

Horiuchi-Coale and Mitra models are by far more accurate than the classical life table estimate or 

the extrapolation method (Ediev, 2018). Mitra model is, on average, more accurate than the 

Horiuchi-Coale formula; yet, the Mitra model is subject to frequent outliers with large errors that 

limit its practical usability. Instability of the Mitra model originates from its sensitivity to 

inadequate estimates of the population growth parameter (Ediev, 2019a), a problem that will be 

addressed further down in the paper. 

The extrapolation method, on the contrary, appeared in tests to be of as low accuracy as 

the classical estimate (1) with additional disadvantage of instable estimation errors. Indeed, in spite 

of using the mortality extrapolation to improve life expectancy estimates, it appears to be better to 

use estimates of remaining life expectancy in the open age interval to constrain and hence improve 

accuracy of the extrapolation itself (Ediev, 2017). Improved estimates of old-age remaining life 

expectancy together with the constrained extrapolation of the death rates to elder ages enables 

obtaining as accurate estimates of old-age mortality with open age interval 60+ as may typically 

be obtained by traditional unconstrained extrapolation with open age interval 80+. This presents a 

remarkable possibility of extending mortality statistics for countries, like many in Africa, Latin 

America and Asia, where data quality is already very low by age 80. The key ingredient of this 

possible extension of mortality statistics is bettering the estimates of remaining life expectancy.  

The Mitra model (3) may be reformulated as: 

𝑒𝑎 ≈ 𝑀𝑎+
−1𝑒−𝑟(𝑀𝑎+

−1−(𝑥̅−𝑎))+𝑟2𝑀𝑎+
−1(𝑥̅−𝑎)

, (5) 

which illuminates that the growth parameter r, entering the formula in a quadratic form, turns 

problematic when obtained with a bias or when the population is, in fact, non-stable. This 

particular representation of the growth parameter comes from approximations used when deriving 

the formula (Ediev, 2019a) and may not be addressed within the model itself, although some 

improvements may be achieved by combining the model with other, less accurate yet stable 

alternatives, such as the classical estimate (Ediev, 2018, 2019a). 

Here, we suggest improving the estimates of life expectancy at old age by better accounting 

for population stability or dropping the stability assumption completely in a set of alternative 

models described further below. 

In the first two alternative models, we suggest using the following (exact) relation 

applicable to a stable population: 

𝑒𝑎 = 𝑀𝑎+
−1𝐾, (6) 

where, K is the adjustment coefficient that equals, for a stable population: 



𝐾 =
∫ 𝑑(𝑥)𝑒−𝑟𝑥𝑑𝑥
𝜔
𝑎

∫ 𝑑(𝑥)𝑑𝑥
𝜔
𝑎

∫ 𝑙(𝑥)𝑑𝑥
𝜔
𝑎

∫ 𝑙(𝑥)𝑒−𝑟𝑥𝑑𝑥
𝜔
𝑎

, (7) 

where 𝑑(𝑥) and 𝑙(𝑥) are life table deaths and survival. These functions may be obtained from the 

extended life table that, in turn, may be computed using the death rates at advanced old ages 

extrapolated in the constrained extrapolation method (Ediev, 2017). This, essentially, makes the 

remaining life expectancy a (calculable) function of the growth rate and the remaining life 

expectancy itself:  

𝑒𝑎 = 𝐾(𝑟, 𝑓(𝑒𝑎,𝑀𝑎−1))/𝑀𝑎+. (8) 

In our first alternative (the iterative model with exogenous population growth), we suggest 

resolving (8) for the remaining life expectancy given a growth rate estimate. This model is similar 

to models by Horiuhi-Coale and Mitra in relying on population stability and assuming and 

exogenously assessed growth parameter. Our model is free, however, of approximations made in 

deriving the traditional estimates by Horiuchi-Coale and Mitra. Instead, we use the constrained 

extrapolation of the death rates that is shown to yield reliable patterns of the death rates at old age, 

to better describe the age structure of the stable population. 

The idea of the next model, the iterative model with endogenous population growth, is to 

supplement the mortality data (𝑀𝑎−1, 𝑀𝑎+) by population data in order to estimate both the life 

expectancy and the growth rate. To this end, we suggest using the ratio of the population in the 

open age interval to population in an interval below the open age (both quantities, supposedly, are 

not affected by age exaggeration):  

𝑷𝒂+

𝑷∆ 𝒂
=

∫ 𝑙(𝑥)𝑒−𝑟𝑥𝑑𝑥
𝜔
𝑎

∫ 𝑙(𝑥)𝑒−𝑟𝑥𝑑𝑥
𝑎
𝑎−∆

= 𝑔 (𝑟, 𝐾(𝑟, 𝑓(𝑒𝑎, 𝑀𝑎−1))). (9) 

Equations (8), (9) may numerically be resolved for unknown 𝑒𝑎 and 𝑟.  

The two alternatives have been tested on HMD data and appear to outperform both the 

classical methods and the Mitra model (Figure 3), the model with endogenous growth parameter 

performing marginally better. 

 
Fig. 3. Life expectancy estimation errors for selected models applied to the open age interval: 

the classical life table model (the first line), the Mitra model (the second line), the stable 

population model with exogeneouse population growth parameter based on relation (8) and 

empirical growth rates, and the stable population model with endogenouse population growth 

parameter based on Eqs. (8), (9). Open age interval 75+ in all cases. 

 



Our next two alternative models drop the assumption of population stability and, instead, 

rely on sorts of backward population projection to obtain the population age composition in the 

open age interval. First, we use the robust backward projection (Ediev, 2011b) from cohorts in 

age groups below the open age interval to elder ages. The method (results not shown in the 

abstract) appears to be of accuracy similar to that of the stable population model (8)-(9).  

Substantially more accurate results are obtained for another non-stable model that relies on 

population and mortality estimates for earlier years (if available) to project approximate age 

composition of the population in the open age interval in the given year. In essence, the model 

builds on the cohort-component projection of the elderly (open age interval) population based on 

the initial population distribution by age and on the dynamics of the population below the open 

age interval. For a single-year step, the method is illustrated in Figure 4. Because the death rates 

are calculated on the basis of mid-year populations, the cohort-component projection step will 

depend on death rates in both years: 
𝑃𝑡,𝑥

𝑃𝑡−1,𝑥−1
=

𝐿𝑥

𝐿𝑥−1
~𝐿𝑇 (

𝑀𝑡−1,𝑥+𝑀𝑡,𝑥

2
) = 𝐿𝑇 (

𝑀𝑡−1,𝑥+𝑓(𝑒𝑎,𝑀𝑎−1)

2
), (10) 

here, 𝐿𝑇(𝑚𝑥) stands for a function of the life-table constructed from the death rates 𝑚𝑥. All in all, 

population at time t will be determined by combination of population in the previous year and 

death rates of the previous and current years, where the latter will be a function of the expectation 

of life to be estimated: 

P(𝑡, 𝑥 ≥ 𝑎)~{

P(𝑡 − 1, 𝑥 ≥ 𝑎 − 1)

M(𝑡 − 1, 𝑥 ≥ 𝑎 − 1)

M(𝑡, 𝑥 ≥ 𝑎 − 1)~𝑓(𝑒𝑎, 𝑀𝑎−1)
 (11) 

Once the age composition is determined, it may be used to produce the correction coefficient in 

(6): 

𝐾 =
∫ 𝑃(𝑥)𝑀(𝑥)𝑑𝑥
𝜔
𝑎

∫ 𝑑(𝑥)𝑑𝑥
𝜔
𝑎

∫ 𝑙(𝑥)𝑑𝑥
𝜔
𝑎

∫ 𝑃(𝑥)𝑑𝑥
𝜔
𝑎

 (12) 

that generalizes the stable-population relation (7) to an arbitrary non-stable case. Combining 

relations above, another recurrent relation may be developed that may be resolved for the 

remaining life expectancy: 

𝑒𝑎 = 𝐾(P(𝑡 − 1, 𝑥),𝑀(𝑡 − 1, 𝑥), 𝑓(𝑒𝑎,𝑀𝑎−1))/𝑴𝒂+. (13) 

On HMD data, the cohort-component-based approach shows estimation errors of order of 

magnitude lower as compared to the Mitra or the stable-population models (Figure 5). The model, 

however, relies on availability of long time series of demographic data, a case not relevant to many 

countries with deficient demographic data. 

The fifth alternative relates – in a regression model – the remaining life expectancy at given 

age a to the death rate at that age (Ediev, 2019b):  

𝑙𝑛(𝑒𝑎) = 𝐶 + 𝑘1𝑙𝑛(𝑀𝑎) + 𝑘2𝑀𝑎 + 𝑘3𝑀𝑎
2 + 𝑘4𝑎 + 𝑘5𝑎

2 + 𝑘6𝑆𝑒𝑥 + 𝑘7𝑃𝑒𝑟𝑖𝑜𝑑 + 𝜀, (14) 

here, ‘Sex’ and ‘Period’ stand for categorical variables representing sex and calendar year, 

𝐶, 𝑘1, 𝑘2, … , 𝑘7 are the model parameters, 𝜀 is the error term. The method is less accurate than the 

models suggested above; yet, it is robust and is of accuracy close to (yet, marginally worse than) 

that of methods by Horiuchi-Coale and Mitra (Figure 6). Hence, it may be recommended when the 

population stability assumption is violated substantially and, yet, data do not allow applying the 

more advanced backward-projection based estimation models. An important feature of the 

regression model is its statistical independence of other alternatives considered here (Ediev, 

2019b). 

Our last (behavioral) model builds upon explicit account for the mechanism of age 

exaggeration. In the behavioral model, we assume that a fraction 𝛼 of people above age 𝑥0, randomly 

chosen, exaggerate their true age by 𝛿 years each. Although this assumption simplifies the real-life age 

misreporting in many ways, the model does reflect the most important aspect of the age exaggeration; more 

complex patterns of age exaggeration may be represented as a mix of the elementary exaggerations we 

consider here. For brevity, we will call the introduced age exaggeration model as (𝑥0, 𝛼, 𝛿) model. The 

model and population/mortality profiles generated by it has been studied formally (Appendix 1). Although 



it is hard to compare results for the behavioral model to those of other models proposed here, empirical 

results presented in the Appendix suggest that the behavioral model may be efficient in reconstructing the 

age exaggeration profiles and the true death rates distorted by the age exaggeration. 

 

 
Fig. 4. Schematic illustration to the cohort-component-based method of estimating the life 

expectancy at old age. 

 

𝑃𝑡−1,𝑥−1 

𝑃𝑡,𝑥 

Year t-1 Year t 



 
Fig. 5. Life expectancy estimation errors for selected models applied to the open age interval: 

the classical life table model (the first line), the Mitra model (the second line), the stable 

population model with exogeneouse population growth parameter based on relation (8) and 

empirical growth rates (line 4), the stable population model with endogenouse population 

growth parameter based on Eqs. (8), (9) (line 5), and the cohort-component-based approach (line 

6). Open age interval 75+ in all cases. 

 

 



 
Fig. 6. Life expectancy estimation errors for selected models applied to the open age interval: 

the Mitra model (the first line), the cohort-component-based approach (the second line), and the 

regression model (14) (the third line). Open age interval 75+ in all cases. 

 

 

Conclusions 

Although the Horiuchi-Coale and Mitra models do provide a substantial improvement over 

the two classics (conventional life table and the extrapolation), their reliance on stable population 

assumption and approximations used pose limits to their practical applicability. The Mitra model, 

in particular, being the most accurate among traditional models, is prone to produce outliers, which 

preclude from a wider practical applications of the model. To resolve those problems, we 

suggested six alternative models: two relying on stable population assumption and on general 

analytical relations; two based on backward-projection ideas used to reconstruct the age structure 

of elderly, one regression model and one behavioral model accounting explicitly for the 

mechanism of age exaggeration. The models presented differ in their accuracy and data demand. 

The most accurate (assuming accurate and detailed input data exists) method is the one based on 

cohort-component method. The least accurate among the first five is the regression model that, 

however, does not rely on population stability assumption and is least data-demanding. Depending 

on data availability and on whether the stability assumption seems valid, one may select a proper 

model in a particular application case.  

The behavioral model stands alone in our list of proposed models, as it produces the entire 

set of death rates rather than correcting the remaining life expectancy. The model could not have 

been tested in the same way as the other models, as it is based on detailed (even if biased) age 

patterns of population and death rates. Nonetheless, empirical approbations of the model point to 

its usefulness in reconstructing the non-distorted death rates and quantifying the magnitude of age 

exaggeration. The model may, apparently, be used as a supplement (an alternative independent 



assessment) to other models when the latter are used in combination with the constrained 

extrapolation to produce age details of mortality change at advanced old age. 
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Appendix 1. The behavioral model  

 
1. Formal results 

Under the (𝑥0, 𝛼, 𝛿) model, death rates at ages 𝑥 ≥ 𝑥0 + 𝛿 will be distorted because younger, in case 𝛿 >

0, or older, in case 𝛿 < 0, people will be erroneously added to the observed population thereby distorting 

the observed death rates to the weighted average of the true rates at ages 𝑥 and 𝑥 − 𝛿: 

𝑀̃(𝑥) =
𝐷̃(𝑥)

𝑃̃(𝑥)
=

(1−𝛼)𝑃(𝑥)𝑀(𝑥)+𝛼𝑃(𝑥−𝛿)𝑀(𝑥−𝛿)

(1−𝛼)𝑃(𝑥)+𝛼𝑃(𝑥−𝛿)
= 𝑀(𝑥) (1 −

1−
𝑀(𝑥−𝛿)

𝑀(𝑥)

1+
1−𝛼

𝛼

𝑃(𝑥)

𝑃(𝑥−𝛿)

), 𝑥 ≥ 𝑥0 + 𝛿, (1) 

here, 𝑀(𝑥) is the death rate at age x, 𝑃(𝑥) is the population of age x, and 𝐷(𝑥) ≝ 𝑀(𝑥)𝑃(𝑥) is the deaths’ 

intensity at age 𝑥, and the tilde mark denotes observed (possibly biased due to the age exaggerations) 

quantities as opposed to the true, non-observed, ones that are not marked. If, as typical at old age, mortality 

increases by age and 𝛼, 𝛿 > 0, then the observed death rate is an underestimation of the true rate, 𝑀̃(𝑥) <

𝑀(𝑥), 𝑥 ≥ 𝑥0 + 𝛿. If, on the contrary, elderly were to reduce their true age (𝛼 > 0, 𝛿 < 0) the observed 

death rates would be overestimated as compared to the true rates: 𝑀̃(𝑥) > 𝑀(𝑥), 𝑥 ≥ 𝑥0 + 𝛿. 

To examine qualitatively the patterns of distortions to the mortality curve in the age exaggeration 

model (1), we use Gompertz (Gompertz, 1825; Thatcher et al., 1998) mortality model that implies, for any 

two ages x and y: 
𝑀(𝑦)

𝑀(𝑥)
= 𝑒𝑏(𝑦−𝑥), (2) 

and the stable population model (Preston, Heuveline, & Guillot, 2001) where: 
𝑃(𝑦)

𝑃(𝑥)
= 𝑒−𝑟(𝑦−𝑥)

𝑙(𝑦)

𝑙(𝑥)
= 𝑒−𝑟(𝑦−𝑥)𝑒−∫ 𝑀(𝑧)𝑑𝑧

𝑦

𝑥 = 𝑒−𝑟(𝑦−𝑥)𝑒−
1

𝑏
𝑀(𝑥)(𝑒𝑏(𝑦−𝑥)−1)

. (3) 

Here, 𝑙(𝑥) is the survival function, i.e., proportion surviving from birth to age 0. 

Combining (1)-(3), we get the analytical expression for distortion of the observed death rates: 

𝑀̃(𝑥)

𝑀(𝑥)
= 1 −

1−𝑒−𝑏𝛿

1+
1−𝛼

𝛼
𝑒
−𝑟𝛿−

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

, 𝑥 ≥ 𝑥0 + 𝛿. (4) 

As it follows from (4), the higher the death rate (i.e., the older the age x), the stronger the proportionate bias 

of the death rate. Two limit cases of (4) deserve closer attention. First, consider younger ages where the 

death rate is low as compared to the population growth rate, 𝑀(𝑥) ≪ 𝑟. In that case, (4) reduces to: 

𝑀̃(𝑥)

𝑀(𝑥)
≈ 1 −

1−𝑒−𝑏𝛿

1+
1−𝛼

𝛼
𝑒−𝑟𝛿

, 𝑥 ≥ 𝑥0 + 𝛿. (5) 

This means, at ages where the growth rate dominates the death rate in shaping the population age structure, 

proportionate distortions to the observed death rates are age-independent. When, additionally, |𝑟𝛿| ≪ 1 

and |𝑏𝛿| ≪ 1, (5) reduces to simply 
𝑀̃(𝑥)

𝑀(𝑥)
≈ 1 − 𝛼𝛿𝑏 ≈ 𝑒−𝛼𝛿𝑏 and does not depend on the growth rate 𝑟. 

In other words, at young ages and at moderate age exaggeration, the proportionate distortion of the death 

rates is determined by the amount of increase of the death rate over the mean magnitude (𝛼𝛿) of the age 

exaggeration and not on the growth rate. 

In the opposite limit case of advanced old ages where 𝑀(𝑥) ≫ |𝑟|, 
𝑀̃(𝑥)

𝑀(𝑥)
≈ 1 −

1−𝑒−𝑏𝛿

1+
1−𝛼

𝛼
𝑒
−
1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

. (6) 

Assuming |𝑏𝛿| ≪ 1, 𝑒−𝑀(𝑥)𝛿 ≪ 𝛼, (6) reduces to 
𝑀̃(𝑥)

𝑀(𝑥)
≈ 𝑒−𝑏𝛿. Hence, at advanced old age with high 

mortality, the observed death rates are also distorted in an age-independent way. Furthermore, distortion of 

the death rates at old ages may be independent of the age exaggeration parameter 𝛼.  

The two limit cases suggest that the population growth rate (and therefore, the departure of the 

population age structure from stationary) might be less important for the distortions of the mortality curve 

as compared to other factors such as the age exaggeration parameters and the level and the slope of the 

mortality curve. 

Patterns of the distortions in the observed population composition by age fit the following relation: 



𝑃̃(𝑥)

𝑃(𝑥)
= 1 + 𝛼 (𝑒𝑟𝛿+

1

𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿) − 1) , 𝑥 ≥ 𝑥0 + 𝛿. (7) 

At young age, population distortions (7) are sensitive to the growth rate, 
𝑃̃(𝑥)

𝑃(𝑥)
≈ 1 + 𝛼𝑟𝛿, unlike in the death 

rates’ distortions. At advanced old age, the population distortions explode remaining 𝛼-specific: 
𝑃̃(𝑥)

𝑃(𝑥)
~𝛼𝑒𝑀(𝑥)𝛿. 

Because the distortions to the death rates due to the age exaggeration vary with age, they also affect 

the pace at which the death rates change. In particular, from (4), the Life-table Ageing Rate (LAR) 

(Horiuchi & Wilmoth, 1997) is subject to the following alterations: 

𝑑𝑙𝑛𝑀̃(𝑥)

𝑑𝑥
=

𝑑𝑙𝑛𝑀(𝑥)

𝑑𝑥
+

𝑑

𝑑𝑥
𝑙𝑛 (1 −

1−𝑒−𝑏𝛿

1+
1−𝛼

𝛼
𝑒
−𝑟𝛿−

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

) = 𝑏 +

1

1−
1−𝑒−𝑏𝛿

1+
1−𝛼
𝛼

𝑒
−𝑟𝛿−

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

1−𝑒−𝑏𝛿

(1+
1−𝛼

𝛼
𝑒
−𝑟𝛿−

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

)

2

1−𝛼

𝛼
𝑒−𝑟𝛿−

1

𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿) (−

1

𝑏
) (1 −

𝑒−𝑏𝛿)𝑏𝑀(𝑥) = 𝑏 −
(1−𝑒−𝑏𝛿)

21−𝛼

𝛼
𝑒
−𝑟𝛿−

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

(𝑒−𝑏𝛿+
1−𝛼

𝛼
𝑒
−𝑟𝛿−

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

)(1+
1−𝛼

𝛼
𝑒
−𝑟𝛿−

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

)

𝑀(𝑥). (8) 

 

Next, we infer analytically, if the classical relation (3) between the stable population growth, 

mortality and age composition may still hold if the population numbers and the death rates are subject to 

distortions due to the age exaggeration. In the stable population, as it follows from (3), there must be a 

relation between the age structure, mortality and growth rate: 
𝑑𝑙𝑛𝑃(𝑥)

𝑑𝑥
= −𝑟 −𝑀(𝑥). (9) 

When observing the biased age structure (7) and the death rates (4) at ages 𝑥 > 𝑥0 + 𝛿, 

𝑑𝑙𝑛𝑃̃(𝑥)

𝑑𝑥
=

𝑑𝑙𝑛𝑃(𝑥)

𝑑𝑥
+

𝑑𝑙𝑛(1+𝛼(𝑒
𝑟𝛿+

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

−1))

𝑑𝑥
= −𝑟 −𝑀(𝑥) +

𝛼𝑒
𝑟𝛿+

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)1

𝑏

𝑑𝑀(𝑥)

𝑑𝑥
(1−𝑒−𝑏𝛿)

1+𝛼(𝑒
𝑟𝛿+

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

−1)

= −𝑟 −𝑀(𝑥)(1 −
𝛼𝑒

𝑟𝛿+
1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

(1−𝑒−𝑏𝛿)

1+𝛼(𝑒
𝑟𝛿+

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

−1)

) = −𝑟 −

𝑀(𝑥)(1 −
1−𝑒−𝑏𝛿

1+
1−𝛼

𝛼
𝑒
−𝑟𝛿−

1
𝑏
𝑀(𝑥)(1−𝑒−𝑏𝛿)

) = −𝑟 − 𝑀̃(𝑥). (10) 

 

In other words, at ages 𝑥 > 𝑥0 + 𝛿, the stable-population relation between the observed age 

composition, death rates and the growth rate holds despite the distortions caused by the age misstatement. 

This, unfortunately, implies it will typically be hard to detect the age exaggeration from observed population 

numbers and death rates. Note, however, that the stable-population relation between the population growth, 

age composition and mortality will be broken at ages at ages 𝑥0 to 𝑥0 + 𝛿 where the death rates will not be 

affected by age exaggeration while the population size will. 

More generally, the usual population balance (Keyfitz & Caswell, 2005): 
𝜕

𝜕𝑡
𝑃(𝑥, 𝑡) +

𝜕

𝜕𝑥
𝑃(𝑥, 𝑡) = −𝐷(𝑥, 𝑡), (11) 

where the second variable in all functions indicates time, will not be violated by age- and time-independent 

age misstatements in any (including non-stable) migration-closed population at ages 𝑥 > 𝑥0 + 𝛿: 
𝜕

𝜕𝑡
𝑃̃(𝑥, 𝑡) +

𝜕

𝜕𝑥
𝑃̃(𝑥, 𝑡) =

𝜕

𝜕𝑡
((1 − 𝛼)𝑃(𝑥, 𝑡) + 𝛼𝑃(𝑥 − 𝛿, 𝑡)) +

𝜕

𝜕𝑥
((1 − 𝛼)𝑃(𝑥, 𝑡) + 𝛼𝑃(𝑥 −

𝛿, 𝑡)) = (1 − 𝛼) (
𝜕

𝜕𝑡
𝑃(𝑥, 𝑡) +

𝜕

𝜕𝑥
𝑃(𝑥, 𝑡)) + 𝛼 (

𝜕

𝜕𝑡
𝑃(𝑥 − 𝛿, 𝑡) +

𝜕

𝜕𝑥
𝑃(𝑥 − 𝛿, 𝑡)) = −(1 −

𝛼)𝐷(𝑥, 𝑡) − 𝛼𝐷(𝑥 − 𝛿, 𝑡) = −𝐷̃(𝑥, 𝑡). (12) 
 

 

The population balance will be broken, however, at ages 𝑥0 and 𝑥0 + 𝛿 where population numbers 

will also be subject to jumps caused by the onset of age exaggeration process. 

The last two formal results show that detecting the age exaggeration from the data alone, without 

specific assumptions as regards, for example, the shape of the mortality curve, might be a very tough task. 



We conclude this section by studying how the age exaggeration may affect the life expectancy 

estimates in the case of stationary population. The stationary population case is convenient to study because 

our earlier results suggest the age structure and distribution of deaths at ages 𝑥 > 𝑥0 + 𝛿 will be consistent 

with each other despite the distortions caused by the age exaggeration. In particular, the remaining life 

expectancy at age 𝑥0 + 𝛿 in stationary population is the mean age of the observed distribution of deaths. 

At ages older than 𝑥0 + 𝛿, the observed distribution of deaths is a mix of the true distribution taken  with 

weight (1 − 𝛼)𝑙(𝑥0 + 𝛿), where 𝑙(𝑥) is the survival curve at age 𝑥, i.e., stationary-population number of 

deaths at ages older than 𝑥, and of shifted distribution of deaths at ages 𝑥 > 𝑥0 with weight 𝛼𝑙(𝑥0). 

Therefore, the observed remaining life expectancy at age 𝑥0 + 𝛿 in the stationary population equals: 

𝑒̃(𝑥0 + 𝛿) =
(1−𝛼)𝑙(𝑥0+𝛿)𝑒(𝑥0+𝛿)+𝛼𝑙(𝑥0)𝑒(𝑥0)

(1−𝛼)𝑙(𝑥0+𝛿)+𝛼𝑙(𝑥0)
 (13) 

here, 𝑒(𝑥) is the remaining life expectancy at age 𝑥. When mortality at ages 𝑥0 to 𝑥0 + 𝛿 falls to levels 

where 𝑙(𝑥0 + 𝛿) ≈ 𝑙(𝑥0) and 𝑒(𝑥0) ≈ 𝛿 + 𝑒(𝑥0 + 𝛿), Eq. (13) leads to the limit 

𝑒̃(𝑥0) − 𝑒(𝑥0) ≈ 𝑒̃(𝑥0 + 𝛿) − 𝑒(𝑥0 + 𝛿) ≈ 𝛼𝛿. (14) 

this will be an upper limit to the remaining life expectancy bias at all ages up to 𝑥 ≤ 𝑥0, because, at those 

ages, using (13) and inequalities 𝑒(𝑥0) ≤ 𝛿 + 𝑒(𝑥0 + 𝛿), 𝑙(𝑥0 + 𝛿) ≤ 𝑙(𝑥), it follows: 

𝑒̃(𝑥) − 𝑒(𝑥) =
𝑙(𝑥0+𝛿)

𝑙(𝑥)
[𝑒̃(𝑥0 + 𝛿) − 𝑒(𝑥0 + 𝛿)] =

𝑙(𝑥0+𝛿)

𝑙(𝑥)
[
(1−𝛼)𝑙(𝑥0+𝛿)𝑒(𝑥0+𝛿)+𝛼𝑙(𝑥0)𝑒(𝑥0)

(1−𝛼)𝑙(𝑥0+𝛿)+𝛼𝑙(𝑥0)
−

𝑒(𝑥0 + 𝛿)] =
𝑙(𝑥0+𝛿)

𝑙(𝑥)

𝛼𝑙(𝑥0)[𝑒(𝑥0)−𝑒(𝑥0+𝛿)]

(1−𝛼)𝑙(𝑥0+𝛿)+𝛼𝑙(𝑥0)
≤

𝑙(𝑥0+𝛿)

𝑙(𝑥)

𝛼𝑙(𝑥0)𝛿

(1−𝛼)𝑙(𝑥0+𝛿)+𝛼𝑙(𝑥0)
=

𝑙(𝑥0)

𝑙(𝑥)

𝑙(𝑥0+𝛿)

(1−𝛼)𝑙(𝑥0+𝛿)+𝛼𝑙(𝑥0)
𝛼𝛿 ≤ 𝛼𝛿. (15) 

 

Hence, in the stationary population, at ages younger than the first age where the age exaggeration 

begins, distortion to the remaining life expectancy will be bounded by the upper limit simply equal to the 

mean magnitude of the age exaggeration 𝛼𝛿. That upper limit twill only be reached when mortality below 

age 𝑥0 + 𝛿 falls to zero. For a non-stationary population, however, the stationary upper limit may be 

exceeded, as, for example, in stable growing populations. 

 

2. Numerical simulations 

To have a better idea of distortions due to age miss-statements in the (𝑥0, 𝛼, 𝛿) model, we ran numerical 

simulations using (4), (7) and (8) (Figures A1-A4). 

Distortions to population structure by age substantially depend on the population growth rate that 

may be taken as a proxy for deviations of real-life populations from the stationary population (Figure A1: 

in this and following figures, the horizontal axis is the true death rates in log-scale that, in Gompertzian 

mortality assumed here, represents age). At large age exaggerations 𝛿, distortion patterns for various 

combinations of the growth rate and 𝛼 overlap with each other that makes it problematic to reconstruct the 

age exaggeration parameters from the observed population age composition.  

As expected from the results for the limit cases (5) and (6), distortions of the death rates (Figure 

A2) are not much sensitive to the population growth rate as compared to the age exaggeration parameters. 

This suggests it might be possible to reconstruct the exaggeration model parameters as well as the true death 

rates from the observed deviations of the death rates’ patterns from assumed model mortality curves. The 

underestimation of the death rates at advanced ages is much stronger than at younger ages. In extreme cases, 

the observed death rates may go down to as low as only dozens of percent of the true rate. Such a strong 

biases at old age, both absolute and relative, in comparison to younger ages, make it possible for the 

observed death rates to follow some very unrealistic non-monotone trajectories at old age (Figure A3)1.  

Consequently, the observed Life-Table Ageing Rate (LAR) may profoundly mislead because of 

the age exaggeration (Figure A4). Somewhat counterintuitively, the age at observed maximum mortality 

(at which LAR equals zero) is younger for less-prevalent (but strong) age exaggerations than for the more-

prevalent ones.  

                                                           
1 Notably, such non-monotone patterns of old-age mortality exist, although not common, even in the high-quality 
data collection of the Human Mortality Database. 



This is an important observation pointing to possibility to distinguish the cases of age exaggeration 

by a small percent of population from cases of heterogeneous population based on the observed mortality 

patterns. As shown by Vaupel and Yashin  (1985), population heterogeneity in frailty may well produce 

sorts of distorted age patterns of the death rates that we demonstrate here for the age exaggeration case. 

Indeed, the two cases are identical mathematically, as a proportion of people who mis-placed themselves 

into a wrong age category may formally be interpreted as a sub-population of the reported age with different 

frailty. Yet, one might distinguish the two scenarios if the age misreporting affects a small fraction of the 

population who, nonetheless exaggerate their age by a large amount while heterogeneity leads to more 

substantial proportions of the population showing moderate differences in their frailty. Old-age mortality 

peaking at some age seems to be a sign of few people strongly exaggerating their age rather than more 

substantial parts of population differing in their frailty.  

 

Figure A1. Distortions to the observed population numbers in relevant age groups as compared to the true 

population by age: by 𝛿 (“Delta”, in years, columns), 𝑏 (rows), 𝛼 (“Alpha”, in percent, colors), r (line 

types). Horizontal axis: the true death rate M(x), log-scale. 

Note: values below 1 indicate underestimation; values above 1 indicate overestimation. 

 



Figure A2. Distortions to the observed death rates as compared to the true rates: by 𝛿 (“Delta”, in years, 

columns), 𝑏 (rows), 𝛼 (“Alpha”, in percent, colors), r (line types). Horizontal axis: the true death rate 

M(x), log-scale.  

Note: values below 1 indicate underestimation; values above 1 indicate overestimation. 

 



Figure A3. Observed death rates (vertical axis) vs true death rates (horizontal axis, log-scale): by 𝛿 

(“Delta”, in years, columns), 𝑏 (rows), 𝛼 (“Alpha”, in percent, colors), r (line types). 

 
 



Figure A4. Observed life table ageing rate (LAR) at relevant age: by 𝛿 (“Delta”, in years, columns), 𝑏 

(rows), 𝛼 (“Alpha”, in percent, colors), r (line types). Horizontal axis: the true death rate M(x), log-scale. 

 
 

3. Calibrating the age exaggeration model 

In order to assess possible values of the parameters if the behavioral model fit to empirical 

data, we estimated the optimal model parameters that would reproduce some selected empirical 

patterns of the death rates. The selected patterns were those from the Human Life Table Database 

(2017) that show signs of age exaggeration (such as levelling off and reversing age trends in old-



age mortality). Results are presented in Table A2 and Figures A5 (produced assuming Gompertz 

model) and A6 (produced assuming Kannisto model). 

 

Table 2. Reconstructed age exaggeration model parameters and observed and corrected life table 

indicators. Selected populations of the Human Life Table Database (2017).  

Country Sex Period b x0 α δ e(0) 

e(0) 

cor-

rected 

e(0) 

bias 
e(x0) 

e(x0) 

cor-

rected 

e(x0) 

bias 

China rural M 1981 0.087 73 4.1% 

 

17.0  65.9 65.9 -0.02 8.1 8.2 -0.05 

China rural F 1981 0.098 56 1.0% 23.0  68.7 68.6 0.11 21.2 21.1 0.14 

Cuba M 2005_07 0.091 75 6.5% 13.9  76.1 75.9 0.11 10.9 10.7 0.18 

Cuba F 2005_07 0.103 77 9.5% 12.6  80.1 79.9 0.20 11.2 10.9 0.30 

Mexico M 1983_85 0.072 76 3.0% 17.0  66.2 66.1 0.02 10.1 10.0 0.06 

Mexico F 1983_85 0.084 76 4.4% 17.0  72.2 72.2 0.02 10.8 10.8 0.03 

Turkey M 2013_14 0.096 63 0.9% 21.0  75.3 75.3 0.03 17.6 17.6 0.03 

Turkey F 2013_14 0.117 71 6.7% 13.0  80.7 80.6 0.18 14.7 14.4 0.21 

Uruguay M 2004 0.099 80 4.5% 8.0  71.7 71.6 0.04 6.6 6.4 0.12 

Uruguay F 2004 0.124 68 21.3% 5.4  79.0 78.3 0.76 16.8 15.9 0.92 

Source: Own elaboration on (HLTDB, 2017). 

 



Figure A5. Empirical (circles) and reconstructed biased (red lines) and corrected unbiased death rates 

(red lines) obtained by fitting the behavioral model combined with the Gompertz model of old-age 

mortality rates. Selected populations of the Human Life Table Database (2017). 

 
 

 



Figure A5. Empirical (circles) and reconstructed biased (red lines) and corrected unbiased death rates 

(red lines) obtained by fitting the behavioral model combined with the Kannisto model of old-age 

mortality rates. Selected populations of the Human Life Table Database (2017). 

 


