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Abstract In this paper we investigate the non-economic determinants of interna-
tional migration flows. We approach this problem using a Bayesian graphical model
methodology which performs variable selection among a set of covariates that are
potentially related to migration flows. We consider inflows to Italy from 171 differ-
ent countries of origin on which we measure demographic and geographic charac-
teristics. While results are coherent with the most recent literature, our method also
provides measures of uncertainty around the dependence structure between covari-
ates and migration flows.
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1 Introduction

In the last decades, international migrations towards developed countries have sig-
nificantly grown thus making prediction of migratory flows a non-negligible com-
ponent in population size projections [1]. Determinants of international migrations
firstly include economic and political issues. Coherently, most of the recent litera-
ture has focused on the effects of economic and political variables [4], while only
few studies have also accounted for non-economic (e.g. demographic) factors [5].
However, demographic variables are quite easy to predict and thus an extended anal-
ysis that also incorporates such characteristics can significantly improve the predic-
tion of international migrations [5].
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In this paper we investigate the relationship between non-economic variables and
international migrations using a graphical model based approach. Graphical models
represent a promising and effective tool for discovering dependence relationships
among potentially many variables. From a statistical point of view, we consider a
problem of covariate selection for a response variable inferring a graphical structure
which jointly models the dependence relationships within covariates and between
covariates and response.

2 Methods

We first introduce some general notation. A graph G is a pair (V,E) where V =
{1, . . . , p} is a set of vertices (or nodes) and E ⊆V ×V a set of edges. Let u,v ∈V ,
u 6= v. If (u,v) ∈ E and (v,u) /∈ E we say that G contains the directed edge u→ v. If
instead (u,v) ∈ E and (v,u) ∈ E we say that G contains the undirected edge u− v.
Two vertices u,v are adjacent if they are connected by an edge (directed or undi-
rected). For any pair of distinct nodes u,v ∈ V , we say that u is a parent of v if
u→ v. Conversely, we say that v is a son of u. The set of all parents of u in G is
denoted by paG (u). A graph is called directed (undirected) if it contains only di-
rected (undirected) edges. A directed graph is called Directed Acyclic Graph (DAG
for short, denoted by D) if it does not contains cycles, that is a sequence of edges
v1 → v2 → . . .→ vk such that v1 ≡ vk. A particular class of undirected graphs is
represented by decomposable graphs, also called chordal or triangulated. An undi-
rected graph is decomposable if every path of length l ≥ 4 contains a chord, that is
two non-consecutive adjacent vertices [6]; see for instance graph G in Figure 1. A
graph encode a set of (marginal and) conditional independencies which determines
its Markov property and can be read off from the graph itself using the notion of d-
separation [7]. Moreover, we say that two graphs are Markov equivalent if and only
if they encode the same conditional independencies. Markov equivalent graphs are
not distinguishable in the presence of observational data only (in other terms they
are “score equivalent”). Most importantly, for each decomposable undirected graph
G we can find a perfect directed version, G< (a DAG), which is Markov equivalent
to G [6]; see also Figure 1.
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Fig. 1: A decomposable undirected graph G and its perfect directed version G<.
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Let now Y be a response variable, X1, . . . ,Xq a collection of covariates. Each vari-
able (both the response and covariates) can be associated to a node in a graph, whose
structure will constrain the sampling distribution of the data. We are interested in
selecting which covariates directly affect the response. In addition we allow for the
presence of a dependence structure among covariates that we model by means of an
undirected decomposable graph Gx = (Vx,Ex) (within covariates graphical structure)
where Vx = {x1, . . . ,xq} and Ex ⊆ Vx×Vx is the set of (undirected) edges between
covariates. We also denote with G<

x the perfect directed version of Gx. Dependence
relationships between covariates and response are instead represented by a directed
graph Dy |x =(Vxy,Ey |x) where Vxy = {x1, . . . ,xq,y} and Ey |x⊆{x1, . . . ,xq}×y. Con-
sequently, in Dy |x we allow for the presence of directed edges from the covariates
to the response only. The entire graphical structure, that we call regression DAG, is
finally determined by the union of G<

x and Dy |x and is denoted by Dxy (or simply
D as in the sequel); see for instance Figure 2. For a given DAG D we can write the
factorization

f (x1, . . . ,xq,y) =
q

∏
j=1

f
(
x j |xxxpaD ( j)

)
· f
(
y |xxxpaD (y)

)
, (1)

where paD ( j) is the set of parents of node j in D .
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Fig. 2: A regression DAG with q = 4 covariates X1, . . . ,X4; the within covariates graphical struc-
ture corresponds to the perfect directed version of the decomposable graph G in Figure 1.

In a Gaussian framework we now assume X1, . . . ,Xq,Y |ΩD ∼ N (000,Ω−1
D ),

where Ω
−1
D is the precision matrix (inverse of the covariance matrix ΣD ) Markov

w.r.t. DAG D and hence constrained by D . Let also yyy be a (n,1) vector of ob-
servations from the response Y , XXX a (n,q) data matrix collecting the observations
from the q covariates. We denote with S the set of all regression DAGs on q+ 1
nodes which will represent our model space. The objective is then to perform
model selection within the space of regression DAG models given the observed
data (XXX ,yyy); we approach such problem adopting a Bayesian methodology. Specif-
ically, let f (yyy,XXX |ΩD ) be the likelihood function, p(ΩD ) a prior assigned to the
DAG model parameter ΩD . We are interested in evaluating the marginal likelihood
m(yyy,XXX |D) of a generic D ∈S which from a Bayesian perspective represents the
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score assigned to model D ,

m(yyy,XXX |D) =
∫

f (yyy,XXX |ΩD )p(ΩD )dΩD . (2)

To this end we rely on the objective Bayes method of [3] who derive a closed formula
for m(yyy,XXX |D). Let now p(D) be a prior assigned to D . Bayesian prior-to-posterior
analysis amounts to evaluate the posterior probability of D given the data,

p(D |yyy,XXX) =
m(yyy,XXX |D)p(D)

∑D∈S m(yyy,XXX |D)p(D)
, (3)

for each D ∈ S ; see also [2]. Since an exhaustive enumeration of all the regres-
sion DAGs on q+1 nodes is not feasible, we construct a Markov chain Monte Carlo
(MCMC) algorithm to traverse the model space and approximate the posterior distri-
bution in Eq. 3. Our MCMC method is based on a Markov chain on the model space
which performs moves between graphs through additions and removals of edges
provided that each proposed graph falls inside the model space (equivalently it must
be a regression DAG); see also [2] for a general theoretical framework. The output
of our MCMC consists in a collection of regression DAGs visited by the Markov
chain at each time. Accordingly, the posterior distribution in (3) is approximated by
the number of visits of each model. In addition we can compute the posterior prob-
ability of inclusion of each edge and obtain a single model estimate, if required,
by selecting those edges whose posterior probability is greater than some threshold
(e.g. 0.5); see also [2] fo details and the output of Figure 3.

3 Application

We consider Italy as destination country and inflows from 171 different origin coun-
tries at 3 different time spans, i.e. 2000, 2010 and 2016. In this first analysis, we
consider each year separately. The response variable Y is then the logarithm of the
annual number of migrants from origin country i to Italy in a given year t1. The set
of covariates includes the following characteristics of the origin country:

- X1: total population,
- X2: percentage of urban population,
- X3: Potential Support Ratio (PSR), defined as the ratio of people younger than 15

to the working-age population (those aged 15-64),
- X4: Infant Mortality Rate (IMR), defined as the probability of a live birth to die

before one year of age,
- X5: distance between the capital of origin country and Italy.

1 Data Sources: Y, OECD Stat, https://stats.oecd.org; X1 − X4, The Wold-
bank Database, https://data.worldbank.org/; X5, Centre d’Etudes Prospectives et
d’Informations Internationales (CEPII), http://www.cepii.fr/
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The dataset contains no missing data and all variables were zero-centred. The nor-
mality assumption is reasonably satisfied after log-transformations.

For the sake of brevity, only results for the latest year considered (2016) are
presented. Similar results, available upon request from the Authors, were obtained
for years 2000 and 2010. Results are summarized in Figure 3. The left panel con-
tains the (5,5) heatmap with marginal posterior probabilities of edge inclusion for
the decomposable within covariates graphical structure and the (5,1) heatmap with
probabilities of inclusion for the directed edges between covariates and response.
In the right panel we instead report the median probability graph model, which is
obtained by selecting those edges whose posterior probability of inclusion is greater
than 0.5. With regards to the within covariates structure it appears that PSR (X3)
is clearly related to the percentage of urban population (X2) and IMR (X4). Such
result is very reasonable as all these variables concern development and economic
conditions. Moreover, among the covariates, only X1,X3 and X4 directly affect the
response. Consequently, we would say that the effect of the other covariates on the
migration flow is “filtered” by them. For instance, using a more technical terminol-
ogy, Y is conditionally independent of X2 given {X3,X4}, Y |= X2 |{X3,X4}.
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Fig. 3: Heatmaps with marginal posterior probabilities of edge inclusion for the graphical struc-
ture within covariates and between covariates and response (left panel). Median probability graph
model (right panel).

4 Discussion

Graphical models represent an effective and powerful tool to study dependencies be-
tween variables and provide results that are easy and straightforward to interpret. In
addition our methodology, being fully Bayesian, returns a posterior distribution over
the space of all possible regression DAG models. This in turn provides a coherent
quantification of any measure of uncertainty around the strength of the dependence
relationship between variables. For simplicity we considered in our study only few
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independent variables, but many other demographic characteristics can be included.
Our results are coherent with the literature; in addition we explored the underlining
structure between the determinants of international migrations.

Alternative techniques to investigate dependency relationships between variables
are of course present in the literature. Among these, Structural Equation Modelling
(SEM) and path analysis are the most used. However, while path analysis typically
requires causal assumptions underlying the dependencies between variables and aim
at estimating the size of such causal relationships under a given path diagram, our
approach is more targeted to discover conditional independencies between variables
and hence more general. Moreover, differently from SEM, the proposed method
implicitly assumes that there are no latent variables in the system.

This contribution clearly presents some limitations which give room for future
improvements. First, we analysed the data for each year separately without account-
ing for the effect of time over migration flows. Furthermore, we based our study on
a Bayesian methodology for model selection of Gaussian graphical models which
cannot be easily adapted to include different types of variables (e.g. categorical),
such as the presence of colonial links or a common language between countries
which have also proven to be important determinants of international migrations.
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