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Abstract (150 Words) 
Quasi-experimental methods in social and health sciences have been increasingly used to 
improve causal inference in the impact of social factors, such as education and job loss, on 
health outcomes. This approach is beginning to be used to better identify gene-environment 
interactions with “exogenous” changes in the environment that are uncorrelated with family 
upbringing.  We exploit two changes in the minimum school leaving age from 14 to 15 from 
March 1947 and 15 to 16 from September 1972 in England, which have been shown to have 
strong impacts on educational attainment. Data, including Polygenic Risk Scores (PGS) for 
cognitive function and dementia, come from the English Longitudinal Study of Ageing 
(ELSA). A fuzzy regression discontinuity design (RDD) will be used to identify the causal 
effect of the policy-induced additional year of education change and how this interacts with 
genetic risk for cognitive decline.   

 

Background 

There is a high burden of cognitive impairment and dementia facing ageing societies around 
the world. There are approximately 50 million people living with dementia all over the world 
and nearly 10 million new dementia cases every year [1]. In the United Kingdom, there were 
850,000 people with dementia in 2015 and the prevalence is projected to rise to over one 
million by 2025 and over two million by 2051 [2].The worldwide costs of dementia have 
increasing rapidly to US $818 billion in 2015 with an increase of 35% since 2010, [3, 4] 86% 
of which occur in high-income countries. Further research is needed to understand cognitive 
ageing and to identify what drives variability in disease development, which will offer crucial 
insights to better target prevention efforts.  

Positive correlations between educational attainment and cognition in older age are well 
established in the literature [5, 6, 7], though how much of this association is causal is still 
subject to debate, due to unobservable factors associated with both education and cognition.  
To address this problem, recent studies have explored the causality between education and 
cognitive function using exogenous policy shocks. Glymour (2008) [8]  et al. used state 
compulsory schooling laws (CSLs) in the US during 1907-1961 and used an instrumental 
variable (IV) approach to estimate the impact of education on memory. Banks and Mazzonna 
(2012) [9]  exploited the compulsory schooling reform in England in 1947, which raised the 
minimum school-leaving age from 14 to 15 for individuals born after a specific cut-off in 
March 1933, and used a fuzzy regression discontinuity (FRD) design to compare individuals 
born before and after the cut-off. Despite adopting different designs, the two studies both take 
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advantage of CSLs as exogenous policy shocks to education to identify the causal effect of 
education attainment on cognitive function. These two studies both found that education 
attainment can protect against cognitive decline among older people. Most recently, Courtin 
et al. (2019) [10] provided new quasi-experimental evidence leveraging a French reform of 
schooling duration and offered a more complex picture: while men performed better in 
cognitive function in older age as a result of longer schooling, women did not improve their 
cognitive function and instead showed more depressive symptoms. Overall, these studies 
suggest that higher education and additional schooling may protect against cognitive decline, 
but there are significant differences across countries, cohorts and reforms in the consistency 
of this finding [11]. 

Gene– environment interactions for cognition 
The availability of genetic data in large population surveys has resulted in an explosion of 
research on gene-environment interactions (G×E) [12, 13, 14, 15]. G×E occurs when “difference 
genotypes lead to variation in responses to social and/or physical environments (or vice 
versa)” [16]. Gene-environment interactions for cognition have been reported in several studies 

[17, 18, 19, 20, 21, 22] among which the ε4 allele of ApoE (APOE4) is one of the crucial genetic risk 
factors for cognitive decline [23]. Few other risk genes of cognitive decline have been 
explored systematically to examine the G×E interaction.  

The G×E research in cognition has been dominated by two hypotheses [24]: On the one hand, 
the “social trigger” model poses that the risky genotype will have a more deleterious effect on 
cognition when triggered by the most adverse environments. On the other hand, the “social 
push” model poses that the phenotype which refers to the expression of the trait will be 
pushed by the most harmful environments, while the risky genotype will become effective on 
cognition when the environments turns to be favourable. 

Some studies suggested that education can moderate the relationship between APOE4 and 
cognitive decline [25, 26] or dementia [27]. Using the HRS data, McCardle and Prescott (2010) 
[28] found steeper memory declines for APOE4 carriers compared to the non- APOE4 carriers 
only among those with 8 years of education or less, which is consistent with the social trigger 
model [29]. More research is needed to identify the gene-education interaction on cognitive 
decline in different populations and involving multiple genes [30].Considering other social 
factors such as socioeconomic status (SES), Boardman (2012) [62] combined the social 
characteristics of older adults’ neighbourhoods with APOE genotype to predict how cognitive 
function varies over time. This study shows that the effect of APOE4 varies significantly 
across neighbourhoods and it displays stronger effects on cognitive function among those in 
the most adverse neighbourhoods, which supports the “social push” model. 

Challenges of traditional GxE research and new area of quasi-experimental GxE 
designs 
One key challenge in GxE research is the conceptual issue of modelling interactions between 
variables that are themselves correlated (gene-environment correlation [rGE]). One the one 
hand, rGE can emerge due to parents and children sharing both genes and environments [31, 

32]. Alternatively, rGE can otherwise occur when children’s characteristics which are 
inherited from parents cause responses from the social environment [33, 34]. The issue of rGE 
would be overcome by using research designs that leverage exogenous environmental 
variation. A few studies have recently contributed to incorporating quasi-experimental 
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designs into a G×E framework to reduce the influence of rGE and strengthen the ability to 
demonstrate causal inferences.  

Polygenic risk scores, or polygenetic scores (PGS), have been recently employed in the gene-
environment interaction research. PGS are generally calculated from a weighted quantity of 
allelic count and are presented as continuous scores [35, 36, 37]. They are specific to each 
individual to measure the propensity to a phenotype [38]. Domingue [39] conducted a polygenic 
score (PGS) study to test whether genetic predispositions to better subjective well-being can 
buffer against the risk of the development of depression following a stressful life event: 
spousal death. Utilizing an RD design, Domingue found that having a higher PGS for 
subjective well-being, which may reflect the opposite end of depression, buffered against 
increased depressive symptoms following spousal death.  

To estimate the causal effect of genes and education on health, two studies in the UK 
exploited the raising of the minimum school leaving age in 1972 from 15 to 16, which 
induced sharp across-cohort differences in educational attainment. Using data from the UK 
Biobank, Barcellos [40] combining an RD design and PGS found that the additional year of 
schooling affected body mass index (BMI) in middle age and can reduce the differences in 
unhealthy body size related to genetic risk of obesity, which, specifically, can reduce from 20 
to 6 percentage points of obesity between the top and bottom PGS terciles. Also using a RD 
design, Davies [41] employed the educational attainment genome-wide score to examine 
whether participants influenced by the school reform have more genetic variants associated 
with educational attainment. The findings are consistent with prior studies, indicating that 
remaining in school after 15 years of age has a causal effect on decreased risks of diabetes 
and mortality. Those who remained in school tend to have more single nucleotide 
polymorphisms (SNPs) associated with higher educational attainment. 

Fletcher [42] examined the effects of early-life exposure to pneumonia – one leading cause of 
infant death in the early 20th century – on cognitive outcomes among older people in one 
working paper. Leveraging the introduction of sulfonamide antibiotics in 1937 – which led to 
dramatic reductions in pneumonia morbidity and mortality – along with state-level 
differences in baseline disease rate – Fletcher used an instrumental variable (IV) model and 
found that infant exposure led to faster cognitive decline in adulthood. These effects were 
largest for individuals with higher genetic endowments (as measured by polygenetic scores 
(PGS) for cognition), and null for those with lower endowments.  

Using the Vietnam-era draft lottery when many young men were called to military service, 
Schmitz and Conley incorporated polygenic scores into an instrumental variable design to 
investigate the effects of compulsory military service and genotype on schooling 
performances [43] and smoking behaviours [44]. Their findings suggested that conscription may 
interact with low PGSs for education to reduce veterans’ educational attainment, resulting in 
fewer years of schooling and less likelihood of obtaining a postsecondary degree. They also 
found that the interaction between compulsory military service and a high genetic 
predisposition for smoking increase the risk of smoking, smoking heavily and being 
diagnosed with hypertension or cancer in later life. 

Quasi-natural experimental designs are able to more effectively isolate exogenous variation 
in observational data, the results from which can be used as a stepping stone for future GxE 
research. To examine how social and environmental factors impact cognition and how this 
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might vary by genetic susceptibility, the most rigorous way is combining the GxE and quasi-
experimental designs. However, to our knowledge there is no published GxE research using 
quasi-experimental exposures for cognition, except the working paper by Fletcher reviewed 
above. [82] The current study will identify the impact of education on cognitive function in the 
ELSA sample and how this interacts with genetic risk for cognitive decline and dementia. 

Methods 
Data 
Data will come from the English Longitudinal Study of Ageing (ELSA) [45], which include an 
original sample of more than 18 000 people aged 50 and older living in England. 
Respondents have been interviewed at two-yearly interviews and the sample has been 
refreshed periodically. This project will use data up to wave 8 (2002-2003 to 2016–2017). 
Meanwhile, this project will use the ELSA Special License data which includes the “month-
of-birth” variable and the Genetic data which includes polygenic scores for cognition.  

Polygenic scores for general cognition 
The PGSs for general cognition in this project were created by ELSA using results from a 
2015 Genome Wide Association Study (GWAS) across 31 cohorts by the Cohorts for Heart 
and Aging Research in Genomic Epidemiology (CHARGE) consortium [46]. A total of 
2,473,946 SNPs was included in the CHARGE meta-analysis summary statistics. Of these, 
the sample size for general cognition is 7223, and 795,327 SNPs overlapped with the ELSA 
genetic database and were included in the PGS for the general cognition phenotype.  

Cognitive function in ELSA 
Cognitive function was assessed at each wave covering three major cognitive domains: 
memory, executive function and basic skills. Following standard practice, we will compute 
an overall score by adding the points of selected questions in each domain, including 20 in 
word list learning and recall, 64 in letter cancellation and 60 in word finding. Then we will 
analyze each domain and the overall score as the cognitive outcomes in the three studies 
below. 

Analytical strategy 
Building off of work by Banks [25] and Clark [47], we will exploit two changes in the minimum 
school leaving age from 14 to 15 from March 1947 and 15 to 16 from September 1972 in 
England. These school reforms have been shown to have strong impacts on educational 
attainment among a large fraction of the UK population after the two changes. A fuzzy 
regression discontinuity design (RDD) [48, 49] will be used to identify the causal effect of the 
policy-induced additional year of education change and how this interacts with genetic risk 
for cognitive decline. All regressions will use pooled waves (wave1-wave8) of the ELSA.  

Specifically, this study will estimate equation (1) and (2) for each school reform including a 
linear function of month of birth, the relevant reform dummy, an interaction term of month of 
birth and the relevant reform dummy, a quadratic term of age (in year) and dummy variables 
for gender and survey wave: 

𝐸"#$ = 𝛼' + 𝛼)𝐷"# + 𝛼+𝐷"# × 𝑃𝐺𝑆"# + 𝑓(𝑅"#) + 𝑋"#$𝛼5 + 𝜇"#$	(1) 

𝐸"#$ × 𝑃𝐺𝑆"# = 𝛾' + 𝛾)𝐷"# + 𝛾+𝐷"# × 𝑃𝐺𝑆"# + 𝑓(𝑅"#) + 𝑋"#$𝛾5 + 𝜃"#$	(2) 
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where 𝐸"#$ indicates years of schooling for individual 𝑖 in birth cohort 𝑐 at wave 𝑤; 𝐷"# is a 
dummy variable indicating whether a respondent belongs to a post-reform cohort; 𝑃𝐺𝑆"# is 
polygenic scores for cognitive function; R𝑅"# is an respondent’s birth month cohort relative 
to the relevant cut-offs (March 1933 for the 1947 reform, September 1957 for the 1972 
reform). 𝑅"# is positive when the respondent is born after the reform and negative when born 
before the reform; X includes predetermined characteristics. 	𝐸"#$ and 𝐸"#$ × 𝑃𝐺𝑆"#	terms are 
endogenous and 𝐷"# and 𝐷"# × 𝑃𝐺𝑆"# are used as instruments. Then this study adds an 
outcome equation (3) to identify the effect of education on cognitive function:  

𝐶𝐹"#$ = 𝛽' + 𝛽)𝐸"# + 𝛽+𝑃𝐺𝑆"# + 𝛽5𝐸"# × 𝑃𝐺𝑆"# + 𝑔(𝑅"#) + 𝑋"#$𝛽A + 𝜔"#$	(3) 

where 𝐶𝐹"#$ is a measure of cognitive function. 

Conclusion 

This paper will examine how social and environmental exposures impact cognition and 
interact with genetic risk for cognitive decline in older age, focusing on an important social 
exposure early in the life course–education. This project will advance the GxE research by 
incorporating quasi-experimental designs and offer insights as to how policy effects might be 
modified by genetic predisposition.  
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