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Abstract

Lifespan variation or lifespan inequality has increasingly received attention

as health indicator because it represents the uncertainty about the even-

tual death an individual experiences. In this paper we take a closer look at

the Gini coefficient of the life table (G) and provide additional insights to

understand how it relates to improvements in mortality. We focus on how

changes over time of the Gini coefficient relate to changes in eo and a new

measure called ϑ that relates to perturbation theory. We provide a math-

ematical foundation of how the Gini coefficient evolves over time and give

analytical formulas to find the threshold age that define premature deaths

for this indicator in the sense that mortality improvements below this age

decreases lifespan variation and increase eo. These results provide important

implications for understanding trends of lifespan variation over time and age.
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1. Introduction1

The life table is an essential tool in mortality studies. It summarizes the2

current mortality experience of a population and it is usually represented3

by life expectancy at birth (eo): the average years a new born individual is4

expected to survive given the current mortality conditions (Preston et al.,5

2001). However, life expectancy, as an average, masks variation in lifespans.6

Lifespan variation or lifespan inequality has increasingly received attention7

as health indicator because it represents the uncertainty about the eventual8

death an individual experiences (van Raalte et al., 2018). There exist several9

indicators to measure lifespan variation, such as the entropy of the life table10

(Keyfitz, 1977; Demetrius, 1978; Fernández and Beltrán-Sánchez, 2015), the11

standard deviation or variance of the age-at-death distribution (Tuljapurkar12

and Edwards, 2011), the coefficient of variation (Aburto et al., 2018), years13

of life lost (Vaupel et al., 2011), or the Gini coefficient (Shkolnikov et al.,14

2003).15

In this paper we take a closer look at the Gini coefficient of the life16

table (G) and provide additional insights to understand how it relates to17

improvements in mortality. We focus on how changes over time of the Gini18

coefficient relate to changes in eo and a new measure called ϑ that relates19

to perturbation theory. We provide a mathematical foundation of how the20

Gini coefficient evolves over time and give analytical formulas to find the21

threshold age that define premature deaths for this indicator in the sense22

that mortality improvements below this age decreases lifespan variation and23

increase eo. These results provide important implications for understanding24

trends of lifespan variation over time and age.25
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2. The Gini coefficient26

The Gini coefficient is one of the most popular indices employed in social27

science to measure concentration in the distribution of a non-negative random28

variable (Gini, 1912, 1914). Originally proposed by economists to measure29

income or wealth inequality, this coefficient has been recently employed in30

demography and survival analysis to investigate within-group inequality in31

terms of ages at death (see, for instance, Hanada, 1983; Shkolnikov et al.,32

2003; Bonetti et al., 2009; Gigliarano et al., 2017).33

2.1. Definition34

As thoroughly discussed by Yitzhaki and Schechtman (2013), there are

several equivalent ways to define the Gini coefficient. LetX be a non-negative

random variable with probability density function f(x) and expected value

E[X], one common definition is

G =
1

2E[X]

∫ ∞
0

∫ ∞
0

|x1 − x2| f(x1) f(x2) dx1 dx2 .

Accordingly, if X is a random variable of the ages at death in a population,35

the Gini coefficient expresses the average of absolute differences in individual36

lifespans relative to the mean length of life E[X].37

Michetti and Dall’Aglio (1957), and later Hanada (1983), suggested a re-38

formulation of the Gini coefficient in terms of the life table functions, given39

by40

G = 1−
∫∞
0
`(x, t)2 dx∫∞

0
`(x, t) dx

= 1− ϑ

eo
, (1)

where `(x, t) is the life table survival function at time t, eo =
∫∞
0
`(x, t) dx41

the life expectancy at birth at time t, and ϑ =
∫∞
0
`(x, t)2 dx is the resulting42
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life expectancy of doubling the hazard at all ages. Barthold Jones et al.43

(2018) interpret ϑ as a measure of shared life expectancy, that is, the average44

time that two newborns at time t are expected to survive together. For the45

purposes of this article, the definition of the Gini coefficient in (1) will be46

used in in the following.47

2.2. Main properties48

The Gini coefficient takes values between 0 and 1, and can be interpreted49

as a measure of inequality. A value of 0 denotes equality in ages at death,50

i.e. when every individual in the population has the same length of life. The51

index increases approaching 1 as lifespans become more spread and unequal52

in the population. This makes the interpretation easy and intuitive: higher53

values correspond to greater within-group inequality in ages at death.54

An additional attractive feature of the Gini coefficient is that it fulfills55

three important properties for inequality indices (Sen, 1973; Anand, 1983):56

(i) it does not change if the number of individuals at each age at death is57

changed by the same proportion (population-size independence); (ii) it does58

not change if each individual lifespan is changed by the same proportion59

(scale independence): (iii) it decreases if years of life are transferred from60

a longer to a shorter lived individual (Pigou-Dalton condition). Note that61

property (i) allows straightforward comparison between populations, includ-62

ing comparisons between different species (Wrycza et al., 2015). Further-63

more, the coefficient is not too sensitive to redistributions at early ages of64

life, and it reflects well changes at adult ages (Shkolnikov et al., 2003). As65

such, several authors have chosen the Gini coefficient over other measures to66

study lifespan inequality, such as... ??67
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Finally, by being bounded between 0 and 1, the Gini coefficient easily68

allows switching from a measure of inequality to a measure of equality of69

lifespans. In particular, from (1) it is immediate to derive “Drewnowski’s70

index”, as coined by Hanada (1983) and defined as71

D = 1−G =
ϑ

eo
=

∫∞
0
`(x, t)2 dx∫∞

0
`(x, t) dx

. (2)

This index can be interpreted as a measure of lifespan equality, and shares72

the same important properties of G. According to Hanada (1983), it was73

first proposed on a working group on health indicators of the World Health74

Organization in the early 1980s.75

3. Changes over time in Drewnowski’s index76

In order to analyze changes over time in the Gini coefficient or its equiv-77

alent Drewnowski’s index, we aim to find an analytical expression for the78

time derivative of D . In the following, a dot over a function will denote the79

partial derivative with respect to time, although variable t will be omitted80

for simplicity.81

3.1. Relative derivative of D82

Proposition 1. Let D = ϑ / eo be Drewnowski’s index, where ϑ =
∫∞
0
`(x)2 dx,83

eo =
∫∞
0
`(x) dx is the life expectancy at birth, and `(x) the probability of sur-84

viving from birth to age x. Then, relative changes over time in D are given85

by86

Ḋ

D
=
ϑ̇

ϑ
− ėo
eo
. (3)

5



Proof. Note that D = ϑ / eo implies that D eo − ϑ = 0. Differentiating with87

respect to time yields88

Ḋ eo + D ėo − ϑ̇ = 0 .

Solving for Ḋ and dividing both sides by D , we get (3).89

Equation (3) decomposes relative changes in D into relative changes of90

the shared life expectancy between two individuals ϑ, and relative changes91

in the life expectancy at birth eo.92

3.2. Time derivatives of eo and ϑ93

Vaupel and Canudas-Romo (2003) showed that changes over time in life94

expectancy at birth are a weighted average of the total rates of mortality95

improvements, expressed as96

ėo =

∫ ∞
0

ρ(x)w(x) dx . (4)

Function ρ(x) = −µ̇(x) / µ(x) stands for the age-specific rates of mortality97

improvement, where µ(x) is the force of mortality (hazard rate) at age x.98

The weights w(x) = µ(x) `(x) e(x) are a measure of the importance of death99

at age x, where e(x) =
∫∞
x
`(a) da / `(x) is the remaining life expectancy at100

age x. Following a similar approach, we aim to express the time derivative101

of ϑ as a weighted average of mortality improvements, but with different102

weights.103

Proposition 2. Let ϑ =
∫∞
0
`(x)2 dx, where `(x) is the probability of surviv-104

ing from birth to age x. Then, its partial derivative with respect to time can105

be expressed as106

ϑ̇ =

∫ ∞
0

ρ(x)w(x) 2 D(x) dx , (5)
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where ρ(x) are the age-specific rates of mortality improvement, w(x) the same

weights defined in (4), and

D(x) =

∫∞
x
`(a)2 da∫∞

x
`(a) da

.

107

Proof. Applying the chain rule, the derivative of ϑ with respect to time is

simply

ϑ̇ =

∫ ∞
0

2 `(x) ˙̀(x) dx .

Using that ˙̀(x) = −`(x)
∫ x

0
µ̇(a) da, and reversing the order of integration,

we get

ϑ̇ = −2

∫ ∞
0

`(x)2
∫ x

0

µ̇(a) da dx = −2

∫ ∞
0

µ̇(a)

∫ ∞
a

`(x)2 dx da

= 2

∫ ∞
0

ρ(x)µ(x) `(x) e(x)

∫∞
x
`(a)2 da∫∞

x
`(a) da

dx

=

∫ ∞
0

ρ(x)w(x) 2 D(x) dx ,

where w(x) = µ(x) `(x) e(x), which proves (5).108

3.3. Changes over time in D in terms of mortality improvements109

Equations (4) and (5) allow expressing changes over time in D in terms

of mortality improvements. Replacing (4) and (5) in (3) yields

Ḋ = D

(
ϑ̇

ϑ
− ėo
eo

)

= D

∫ ∞
0

ρ(x)w(x)

[
2 D(x)

ϑ
− 1

eo

]
dx

=

∫ ∞
0

ρ(x)w(x)
2 D(x)−D

eo
dx

=

∫ ∞
0

ρ(x)w(x)W (x) dx . (6)
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This result shows that changes over time in D (and analogously in G) are

a total average of mortality improvements weighted by w(x)W (x), where

w(x) = µ(x) `(x) e(x) are the same weights as in (4) and

W (x) =
2 D(x)−D

eo
.

4. The threshold age110

4.1. Positive and negative contributions to lifespan equality111

Because Drewnowski’s index is a measure of equality, Ḋ > 0 indicates112

that lifespan equality increases over time, whereas Ḋ < 0 implies that lifes-113

pan equality decreases over time, amplifying the variation of ages at death.114

Equation (6) can then be used to analyze the existence of a threshold age115

that separates positive form negative contributions to lifespan equality as a116

result of mortality improvements.117

Note that in the assumption that mortality improvements occur at all118

ages, ρ(x) = −µ̇(x) / µ(x) > 0 is a strictly positive function. Therefore,119

from (6),120

1. Those ages x for which w(x)W (x) > 0 will contribute positively to121

Drewnowski’s index D and increase lifespan equality;122

2. Those ages x for which w(x)W (x) < 0 will contribute negatively to123

Drewnowski’s index D and favor lifespan inequality;124

3. Those ages x for which w(x)W (x) = 0 will have no effect on the vari-125

ation over time of D .126

Any existing threshold age that separates positive from negative contri-127

butions to lifespan equality will occur whenever w(x)W (x) = 0. Since µ(x),128
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`(x), and e(x) are all positive functions, so are w(x) and eo. Hence,129

w(x)W (x) = 0 ⇐⇒ 2 D(x)−D = 0 . (7)

4.2. Existence and uniqueness of the threshold age130

By means of the following two propositions and one theorem, we aim to131

prove that in a scenario in which mortality improvements occur at all ages132

and ρ(x) > 0 for all x ≥ 0, there exists a unique threshold age aD that133

separates positive from negative contributions to lifespan equality (measured134

by D) as a result of those improvements.135

Remark. Following (2), Drewnowski’s index D is bounded between 0 and136

1, reaching a value of 1 when there is complete equality in the ages at death137

within a population. A score of 0 would express that there is complete inequal-138

ity in the ages at death, but by definition this value can never be reached:139

D = 0 ⇐⇒
∫∞
0
`(x)2 dx∫∞

0
`(x) dx

= 0 ⇐⇒
∫ ∞
0

`(x)2 dx = 0 ⇐⇒ `(x) = 0 (8)

for all ages x ≥ 0. But this implies that the denominator in (8) is also140

0 because `(x) ≥ 0 is always positive, and therefore D would be undefined.141

Hence, 0 < D ≤ 1.142

Proposition 3. Let `(x) be the probability of surviving from birth to age x, D143

Drewnowski’s index as defined in (2), and D(x) =
∫∞
x
`(a)2 da /

∫∞
x
`(a) da.144

Define the function g(x) := 2 D(x)−D . Then, there exists at least one age145

aD such that g(aD) = 0.146

Proof. At age x = 0,147

g(0) = 2 D(0)−D = 2 D −D = D > 0 (9)
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by definition, since 0 < D ≤ 1.148

Besides, when ages become arbitrarily large,

lim
x→∞

g(x) = lim
x→∞

(2 D(x)−D) = 2 lim
x→∞

D(x)−D ,

which only depends on the behavior of D(x). Because `(x) ∈ [0, 1] for all

ages x ≥ 0, we have that 0 ≤ `(x)2 ≤ `(x) and

0 ≤ lim
x→∞

∫ ∞
x

`(a)2 da ≤ lim
x→∞

∫ ∞
x

`(a) da = lim
x→∞

e(x) `(x) = 0 ,

where e(x) is the remaining life expectancy at age x, which proves that both

integrals tend to 0 as x approaches ∞. Consequently, the following limit

lim
x→∞

D(x) = lim
x→∞

∫∞
x
`(a)2 da∫∞

x
`(a) da

is indeterminate, but applying L’Hôpital’s rule, we get

lim
x→∞

D(x) = lim
x→∞

∂
∂x

∫∞
x
`(a)2 da

∂
∂x

∫∞
x
`(a) da

= lim
x→∞

−`(x)2

−`(x)
= lim

x→∞
`(x) = 0 .

As a result,149

lim
x→∞

g(x) = 2 lim
x→∞

D(x)−D = −D < 0 . (10)

Finally, using (9) and (10), in a continuous framework the intermediate150

value theorem guarantees the existence of at least one positive age aD at151

which g(aD) = 0.152

Proposition 4. Let `(x) be the probability of surviving from birth to age x, D153

Drewnowski’s index as defined in (2), and D(x) =
∫∞
x
`(a)2 da /

∫∞
x
`(a) da.154

Then, g(x) := 2 D(x)−D is a strictly decreasing function.155
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Proof. In order to demonstrate that g(x) is a strictly decreasing function, it

suffices to show that its first derivative is negative for all ages x ≥ 0. Note

that since D does not depend on age,

∂

∂x
g(x) < 0 ⇐⇒ ∂

∂x
D(x) < 0 .

Applying the quotient rule together with the fundamental theorem of

calculus, we get

∂

∂x
D(x) =

∂

∂x

(∫∞
x
`(a)2 da∫∞

x
`(a) da

)
=

∫∞
x
`(a) da ∂

∂x

(∫∞
x
`(a)2 da

)
−
∫∞
x
`(a)2 da ∂

∂x

(∫∞
x
`(a) da

)(∫∞
x
`(a) da

)2
=

∫∞
x
`(a) da (−`(x)2)−

∫∞
x
`(a)2 da (−`(x))(∫∞

x
`(a) da

)2 .

Hence,

∂

∂x
g(x) < 0 ⇐⇒ `(x)

∫ ∞
x

`(a)2 da− `(x)2
∫ ∞
x

`(a) da < 0

⇐⇒ 1

`(x)2

∫ ∞
x

`(a)2 da <
1

`(x)

∫ ∞
x

`(a) da .

Note that `(x) = exp
[
−
∫ x

0
µ(a) da

]
for a given age-specific hazard func-

tion µ(x). As such, `(x)2 = exp
[
−
∫ x

0
2µ(a) da

]
can be interpreted as the

survival schedule with doubling hazard 2µ(x) at all ages x ≥ 0. We can then

define

ẽ(x) =
1

`(x)2

∫ ∞
x

`(a)2 da

as the remaining life expectancy at age x of a population with survival sched-

ule `(x)2 and age-specific force of mortality 2µ(x). Then,

∂

∂x
g(x) < 0 ⇐⇒ 1

`(x)2

∫ ∞
x

`(a)2 da <
1

`(x)

∫ ∞
x

`(a) da ⇐⇒ ẽ(x) < e(x)
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for all x ≥ 0, which holds true since doubling the hazard corresponds to a156

lower remaining life expectancy, in the reasonable assumption that µ(x) > 0157

at all ages.158

Theorem. Let D = ϑ / eo be Drewnowski’s index, where ϑ =
∫∞
0
`(x)2 dx,159

eo =
∫∞
0
`(x) dx is the life expectancy at birth, and `(x) the probability of160

surviving from birth to age x. Assume mortality improvements over time161

occur at all ages. Then, there exists a unique threshold age aD that separates162

positive from negative contributions to lifespan equality, measured by D , as163

a result of those improvements.164

Proof. Following (6), changes over time in D can be expressed as a weighted

average of mortality improvements, given by

Ḋ =

∫ ∞
0

ρ(x)w(x)W (x) dx ,

where ρ(x) are the age-specific rates of mortality improvement over time, and

w(x)W (x) the weights. By assumption, ρ(x) > 0 for all ages x ≥ 0. There-

fore, any threshold age that separates positive from negative contributions to

lifespan equality as a result of mortality improvements will occur whenever

w(x)W (x) = 0. From (7),

w(x)W (x) = 0 ⇐⇒ 2 D(x)−D = 0 ,

where D(x) =
∫∞
x
`(a)2 da /

∫∞
x
`(a) da. Proposition 3 proves the existence165

of at least one positive age aD at which 2 D(aD) − D = 0. In addition,166

from Proposition 4 the function g(x) := 2 D(x) − D is strictly decreasing.167

Hence, assuming continuity, g(x) := 2 D(x)−D is a one-to-one function, and168

therefore the threshold age aD is unique.169
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5. Application170

The following steps consist on applying our framework to the best practice171

lifespan variation.172
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