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1 Introduction1

To study and analyze mortality, models are frequently employed because they2

help to understand the characteristics and the evolution of the phenomenon.3

Even if non parametric models allow more accurate data fitting, parametric4

ones have the advantage of facilitating interpretation, comparison and fore-5

casting (Congdon, 1993). In particular, the estimated parameters can be6

used as indicators of mortality pattern and employed to quantify the differ-7

ences among groups of individuals. Moreover, the trends of the computed8

parameter can be examined in order to follow recent transformations and9

to predict future (or past) mortality scenarios (Canudas-Romo et al., 2018).10

Most of the models provided in the literature are mathematical functions11

which fit the death rates (Gompertz, 1825; Kannisto, 1994; Makeham, 1860;12

Siler, 1979) or the odds ratio of probability of dying (Heligman and Pollard,13

1980).14

Recently more attention has been focused on the distribution of deaths15
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by age (Canudas-Romo, 2010; Cheung et al., 2005; Van Raalte and Caswell,16

2013; Wilmoth and Horiuchi, 1999), which provides key insights on longevity17

and lifespan variability (Basellini and Camarda, 2016) and it can be approx-18

imated by probability distributions because it has the advantage of being a19

density function (Mazzuco et al., 2018). In this framework, Zanotto et al.20

(2017) proposed a mixture model, which fits the entire distribution of deaths21

by age. The model is inspired by Pearson’s theory about mortality compo-22

nents (Pearson, 1897) and it is a combination of three distributions, which23

fit infant, premature and adult mortality, respectively. The shape of the the24

model is very flexible so it can be applied to several mortality schedules with25

satisfactory results.26

However the estimation of the parameters can be problematic because of27

computational issues, in particular due to identification problems, produc-28

ing local irregularities in the trends of the estimated parameters. Also when29

period data are analyzed instead of cohort ones, raw fluctuations in the coef-30

ficient evolutions are not appropriate if they are not justified by exceptional31

events (as for instance wars) because mortality changes slowly. Since the32

time evolution of the estimated parameters is very useful to identify paths,33

to formulate hypothesis and explanations, and to reach conclusions, it is con-34

venient to enforce regular trends, which are clearly easier to interpret. To35

this end, one approach is to consider the parameters of the mixture model36

as time-related functions. So, instead of estimating the parameters of the37

model each year separately, the coefficients of the time-related functions are38

calculated using the deaths in the entire time series. The value of a mixture39

parameter for a single year is easily obtained combining the coefficients of its40
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time-related function and the year of interest. If the shape of the selected41

time-dependent functions are sufficiently regular, the trends of the mixture42

parameters are automatically smooth, without unreasonable fluctuations and43

irregularities. Moreover, even if the parameters of the mixture model are cal-44

culated from the time-related functions and not straight estimated, the fit of45

the model is still appropriate: the estimated curves are close to the ones com-46

puted year by year separately, and, in some cases, the adaptation is better47

because gaps and not admissible values are excluded.48

2 Data49

The above-mentioned problem of irregular trends is particularly evident when50

the parameters of the mixture model are estimated using the death distribu-51

tions calculated on male input data (Population size and Deaths) of USA.52

Actually, life tables computed starting from raw period data show rough53

fluctuations presumably caused by the fact that the reference population is54

a fake cohort and no adjustment is made. The estimation process is there-55

fore complex because of the presence of local maxima, which result in a56

more irregularity of the parameters’ trends especially for those having esti-57

mation problems. Moreover, the last open age class between 1959-1980 and58

2000-2009 is 85+, while for the other years it is 100+. Especially for the59

time-window 2000-2009, the adult mode of the death curve is not clearly60

visible in the data. This generates several issues in the maximization of the61

likelihood because the values of the coefficients related to adult mortality are62

outside the possible range. These two reasons lead to select male data of this63
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country as a good example of problematic parameters’ trends, so that the64

advantages of smoothing techniques applied to obtain regular trajectories,65

can be immediately evident.66

3 Method67

In the life table, the distribution of deaths by age can be seen as a probability68

density function. For this reason, Pearson (1897) proposed a mixture of69

distributions with different shapes and characteristics to approximate the70

death curve. Following his idea, a three-component mixture model has been71

introduced by Zanotto et al. (2017), who consider the whole distribution of72

deaths made up ot three types of mortality: infant, premature and adult.73

To approximate the first part of the curve referring to infant deaths, an74

Half Normal distribution was suggested, with its scale parameter fixed and75

equals to 1 to capture deaths at age 0, even when they are only a few.76

The asymmetric shape of the adult mortality was estimated with a Skew77

Normal distribution, introduced by Azzalini (1985). Another Skew Normal78

was employed to fit the central part of the curve (accidental and premature79

deceases), which can assume several patterns, depending on the historical80
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period and the country. The three selected distributions are then81

fI(x) =

Infant mortality︷ ︸︸ ︷√
2

π
exp(−x2) (x ≥ 0) , (1)82

fm(x; ξm, ωm, λm) =

Premature mortality︷ ︸︸ ︷
2

ωm

φ

(
x− ξm
ωm

)
Φ

(
λm

x− ξm
ωm

)
(x ∈ R) , (2)83

fM(x; ξM , ωM , λM) =

Adult mortality︷ ︸︸ ︷
2

ωM

φ

(
x− ξM
ωM

)
Φ

(
λM

x− ξM
ωM

)
(x ∈ R) ,(3)84

with ξm and ξM ∈ R, ωm and ωM ∈ R+, λm and λM ∈ R. Combining these85

three distributions with two mixture parameters η ∈ [0, 1] and α ∈ [0, 1],86

which indicate the probability of infant and adult deaths, respectively, a87

model with eight coefficients was obtained:88

δ(x, θ) = η · fI(x)

+ (1− η) · α · fm(x; ξm, ωm, λm)

+ (1− η) · (1− α) · fM(x; ξM , ωM , λM),

(4)89

where θ = (η, α, ξm, ωm, λm, ξM , ωM , λM). Equation (4) is an improper dis-90

tribution because the support of the Skew Normals is defined also for R−,91

while the death curve is only positive-valued. However, the probability mass92

for ages x < 0 is negligible. To estimate the vector θ, the maximization of93

the likelihood is required, but the function can not derive directly from the94

model in equation (4) because deaths in the life tables are grouped into age95

intervals (x, x+ 1):96

dx(θ) =

∫ x+1

x

δ(u; θ) du. (5)97
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Thus, the parameter values θ can be computed using the likelihood function98

of a multinomial distribution, which models the probability of the number of99

deaths occurring in the age interval (x, x+ 1)100

L(θ) =
Ω∏

x=0

dx(θ)Dx , (6)101

where Dx are the real death counts in (x, x+1) and Ω is the highest attained102

age at death. For each year, the model parameters are estimated maximiz-103

ing equation (6), obtaining vectors of 8 values. In most cases, the parameter104

trends are regular and smooth, but there is a set of situations where the co-105

efficients exhibit non-negligible irregularity. Since mortality changes slowly,106

raw fluctuations in the coefficients’ paths are not appropriate if they are not107

justified by exceptional events. Moreover, in these cases, the standard nu-108

merical optimization algorithms maximizing the likelihood function are often109

not able to identify the global maximum. As example, the trends of two pa-110

rameters are reported in Figure 1. The path of the coefficient related to the111

mode of premature mortality, ξm, is very floating during all the period and112

it is also partially affected by the truncation of the data at age 85+ between113

years 2000-2009, where most of the red points seem to have a smaller value114

than the expected one. Moreover there is a sharp change between years 1995115

and 1997, where the value of the coefficient goes from 20.5 to 16.8 without116

any proper explanation. The parameter λM , which indicates the skewness of117

adult component, shows a smooth trend except when the last open age class118

is 85+: in these years all the points estimated are too small. This results in119

highly asymmetrical curves, incompatible with the distribution of deaths by120
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Figure 1: Trends of two different parameters of the mixture model estimated
maximizing the likelihood function year by year separately.

age.121

Information regarding past and future need to be taken into account in122

order to preserve regularity along time. However, this is not possible by123

estimating the parameters θ for each year separately from the other years.124

In order to ensure regular trends, we consider a different route where every125

coefficient of the mixture is expressed as a function of time t:126

θ
(t)
i = f(t;ψ(i)), (7)127

where i = 1, . . . , 8 denotes the parameter of the mixture mortality model,128

ψ is a vector including all the parameters of the time-dependent functions129

and ψ(i) indicates the coefficients of the time-related function specific for the130

parameter i.131
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A practical example, which can also clarify the smoothing technique, is132

provided below. To select the function form to assign to the trends of the θ133

parameters of the USA between 1959 and 2016, their evolution in the chosen134

period was observed. For ξm, ωm, λm, ωM and η a polynomial of second degree135

was set, for ξM and α a linear regression was enough, while a polynomial of136

third degree was fixed for λM :137

logit
(
η(t)
)

= η0 + η1 · t+ η2 · t2,

ξ(t)
m = ξm0 + ξm1 · t+ ξm2 · t2,

log
(
ω(t)
m

)
= ωm0 + ωm1 · t+ ωm2 · t2,

λ(t)
m = λm0 + λm1 · t+ λm2 · t2,

logit
(
α(t)
)

= α0 + α1 · t,

ξ
(t)
M = ξM0 + ξM1 · t,

log
(
ω

(t)
M

)
= ωM0 + ωM1 · t+ ωM2 · t2,

λ
(t)
M = λM0 + λM1 · t+ λM2 · t2 + λM3 · t3,

(8)

138

where t ∈ [1958, 2016]. In the specific case of USA data, ψ is a vector of 23139

coefficients:140

ψ = (η0, η1, η2, α0, α1,

ξm0, ξm1, ξm2, ωm0, ωm1, ωm2, λm0, λm1, λm2

ξM0, ξM1, ωM0, ωM1, ωM2, λM0, λM1, λM2, λM2) ,

(9)141

so that, when θi = ξm the corresponding ψ(i) is the vector (ξm0, ξm1, ξm2).142

The estimation of value of the time-related coefficients ψ is provided con-143

sidering a comprehensive procedure which embraces all years of the given144
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population, therefore the new likelihood to maximize is the following:145

L∗(ψ) =
∏
t

L
(
θ(t)
)
, (10)146

where L (·) refers to equation (6) and θ(t) = (θ
(t)
1 , θ

(t)
2 , . . . , θ

(t)
8 ) is a vector147

of 8 parameters computed using equation (7) and the year t. Instead of148

evaluating θ, the vector of eight model parameters, separately at each year,149

equation (10) provides directly the coefficient of the parameters’ trends ψ.150

The vector of parameters to specify the shape of mixture model (4) for the151

year t (θ(t)) can be derived from ψ. The smoothing strategy, here suggested,152

has the advantage of reducing the number of parameters to estimate: only153

the time coefficients ψ need to be computed, instead of the eight values θ154

for each period. Moreover, no more than one maximization is required, since155

all the curves are calculated starting from the chosen functions of time: the156

combination of time and time-dependent coefficients ψ arise a vector of 8157

parameters θ(t) for each year.158

To estimate the 23 time-dependent coefficients ψ specified for the USA in159

the polynomials (8), equation (10) is maximized trough the algorithm optim160

implemented on R. Since ωm, ωM are defined only positive and the range of the161

two mixture coefficients α and η is [0, 1], sometimes the numerical optimiza-162

tion algorithm reaches combinations of points which define not admissible163

values. These two restrictions, which produce problem in the maximization164

of the likelihood, can easily solved by employing a ri-parametrization. This is165

the reason why for ωm and ωM a logarithm transformation is used, while the166

logit function is selected for α and η. Additionally, the starting points need167
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to be chosen carefully to facilitate the convergence of the algorithm. Con-168

sidering the trends of the parameters θ estimated year by year separately, a169

rough approximated estimate of time-related coefficients is computed fitting170

the polynomials of first, second and third degree with a linear model. Next,171

to improve upon the initial estimation, a refinement step is undertaken. For172

each coefficient of ψ, a set of starting values is defined sampling randomly173

from a Normal distribution using their linear model estimates and standard174

error as mean and standard deviation. The algorithm is then run using all175

the random combinations as starting points. The set of the parameters ψ176

with the higher likelihood value is finally chosen. The number of random sets177

is fixed at 300, which is the minimum quantity that ensures the convergence178

on the global maximum.179

4 Results180

The convergence of the algorithm to maximize the likelihood is quite fast,181

but not always the global maximum is reached. For this reason a set of182

different starting vectors is necessary, even if the time consuming increases183

significantly. As an example, in Figure 2, the 300 curve estimated for the184

trends of ξm and λM are drew. The identification of the right polynomial185

(ξm0, ξm1, ξm2) for the path of ξm, the shape parameter of premature com-186

ponent, has some obstacles as it is possible to see in Figure 2a, where there187

are several curves that are clearly inconsistent. The coefficients of early mor-188

tality (α, ξm, ωm and λm) also in the estimation year by year have shown189

several identification problems which are reflected in the zig-zag trends. Cer-190
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Figure 2: Polynomials estimated using the 300 random starting points for
two parameters of the mixture model. The functions whose time-related
coefficients reach the higher likelihood value are highlighted.

tainly, this issue has affected also the estimates of the curve for ξm tendency.191

Moreover, since the functional form for the trend is assigned based on the192

observation of the values computed year by year, it is maybe possible that a193

parabola is not the best option. Regarding the skewness parameter of adult194

mortality, λM , the curves of polynomial estimated with the different starting195

points are close to each others with only few exceptions, as it is possible to196

see in Figure 2b. In any case for both the coefficients, the trends traced by197

the polynomial with the higher likelihood value is coherent with the points.198

Moreover the two curves are not affected by the truncation of the last open199

age class at 85+ between 2000 and 2009. The advantage to estimate all year200

together is clearly visible in Figure 2: the trends obtained using the time-201

related coefficients ψ is clear, easy to understand and more interpretable. In202
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the case of more regular paths, for instance, for parameter ξM and η, the203

identification of the functional form of the polynomial is easier and also the204

estimation of its time-dependent coefficients. In these cases the 300 curves205

almost overlap each others. Instead, the behaviors of ωm, λm, α and ωM are206

similar to Figure 2b.207

Starting from ψ, the time-related coefficients of the polynomials, it is208

possible to compute the vector of 8 parameters for each year, θ(t), and to209

compare the curve of the mixture model estimated year by year with the one210

obtained applying the comprehensive procedure. Since the period covered211

by the data is 58 years, a selection of 4 significant cases is reported in Figure212

3. In 1960 (second year of the time series) and in 1990 the two curves213

almost overlap, in particular in the second graph, where no differences are214

visible. In Figure 3a the model estimated year by year seems to capture215

better the senescent deaths (after the mode of the death curve), while the216

new methodology fits more accurately the adult ones (before the mode).217

The 2007 is one of the years in which the last open age class is truncated at218

age 85+. As you can see in Figure 3c, the mixture model computed with the219

classic procedure tends to estimate a too skewed curved, which is inconsistent220

also considering the shape of the distribution of deaths after 2010, where the221

last open age class is again 100+. Instead, the parameters estimated from222

the time-related coefficients ψ allow to draw a more robust model, which is223

not affected by the range of the last class of deaths’ counts. In the last year224

of the time series, 2016, the shape of the two models appear again very close,225

but the one estimated taking into account all the years approximate better226

the deaths around the mode of the distribution.227
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Figure 3: Comparison between the curve of the mixture model estimated
year by year separately and the one calculated as result of the functions of
time.
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5 Conclusion228

A smoothing technique to obtain regular parameters’ trends of a mixture229

mortality model is here presented. Fitting the model considering each year230

on it own generates, in most of the cases, raw fluctuations in the parame-231

ter evolutions because, in the estimates, the time component is completely232

omitted. Instead of computing the vector of parameters year by year, infor-233

mations regarding past and future need to be taken into account. The goal234

is obtained specifying for all the parameters of the model time-dependent235

functions, whose coefficients are estimate directly, maximizing the likelihood236

using the deaths of the entire available period.237

By doing so, the number of unknown quantities to estimate is smaller:238

instead of calculating a vector of model parameters for each year of the time239

series, only the coefficients of the time-related functions need to be computed.240

Moreover a single maximization is required because the time-dependent co-241

efficients are estimates all at once. The parameters’ trends obtained with242

the new procedure are smooth, so they provide a clear indication about mor-243

tality evolution, and easier to interpret than the ones computed by fitting244

the model year by year. Furthermore, the fit of the mixture model whose245

parameters are reconstructing starting from the time-dependent coefficients,246

show a satisfactory adaptation which is close and in some case better than247

the one obtained with the estimates year by year.248

To reach satisfactory estimates of the time-related coefficients, al least 300249

vectors of different starting points are required to identify the global max-250

imum of the likelihood function. Thus, the estimation of smoothing trends251
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is time-consuming while fitting the model year by year is faster. Further-252

more, the selection of the polynomials to assign to each model parameter253

is based on the trajectory observed on the estimates year by year, in the254

belief that most of them are correctly identified. Finally, how the choice of255

the polynomials of the time-related functions influences the estimates of the256

parameter trends is not established: the effects of an improper specification257

of the functional form is not yet studied. Although the above mentioned258

criticisms, the smoothing procedure allows to reach the target set, ensuring259

both parameters’ trends without irregularities and suitable fit of the mixture260

model for each year of the time series.261
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