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Abstract

The Lee-Carter model is widely used to forecast mortality by age over time. Since its introduction
in 1992, a variety of methods with increasing methodological complexity have been proposed to fit
and predict particular mortality developments more closely. Considering that so many simple and
also complex methods are available our study has two main goals. First, to establish validation as test
prior to mortality forecasting to confirm that a selected method is suitable. Second, to show that the
simple Lee-Carter model is broadly applicable, particularly in mortality contexts without substantial
trend changes and decisive shifts in the age at death distribution. We adopt a detailed and objective
validation design to assess the accuracy and bias of Lee-Carter forecasts 20 years ahead. For our
analysis, we use age-specific mortality rates of all available calendar years for 24 highly-developed
countries from the Human Mortality Database. We quantify Lee-Carter’s forecast performance with
the percentage error for life expectancy and life span disparity at birth in three analytical settings.
Most strikingly, we find that the simple Lee-Carter model is indeed suitable to forecast mortality
for many highly-developed countries in the most recent years. More complex methods, however,
would have been more suitable than Lee-Carter’s model between 1960 and 2000, when discontinuous
mortality developments have been prevalent in many countries. Finally, we show that validation
serves as a meaningful first test to decide whether a method is likely to be appropriate to forecast
mortality in a country of interest.



1 Introduction

The model of Lee and Carter is a golden standard in mortality forecasting due to its methodological
simplicity and robust forecast performance across various mortality settings. It forecasts mortality in
a country of interest assuming that mortality will change over age and time in the future as it has
changed in the past. Since the introduction of the Lee-Carter model in 1992, several extensions have been
proposed to fit and predict particular mortality developments more closely (e.g.[Booth et al.,[2006; Booth,
[2006; Booth and Tickle| [2008)). For example, considering the advancement of survival improvements to
increasingly older ages (e.g. [Rau et all [2008), more recent approaches account for trends in rates of
mortality improvement and in the distribution of ages at death (e.g. [Haberman and Renshawl} 2012}
Li et al., M Sevéikova et all, [2016; Bohk-Ewald and Raul [2017; |de Beer et al. 2017; [Bardoutsos|
et al, 2018; Basellini and Camardal 2019; Camarda, [2019). Other methodological trends in mortality
forecasting are to account for mortality that is attributable to health behavior such as smoking (e.g.
[Vogt et al.), [2017} [Janssen et al [2013} [Wang and Preston) 2009)) and for mortality developments in other
countries (e.g. [Li and Lee| 2005} [Hyndman et al., 2013} Raftery et al., 2013).

Method complexity has increased over time—but do we really need this complexity every time we
forecast mortality in a country of interest? And how can we be sure if a particular method is suitable to
forecast mortality and, even more important, if it is not suitable? Looking at validation and mortality
forecasting from a new angle, we use validation to assess a method to be (or to be not) suitable to
forecast mortality in a country of interest. So far, few research has focused on comprehensive validation
of demographic forecast methods in general and mortality forecast methods in particular (e.g.
Ewald et al. 2018; |Shang, [2015| 2012; |Shang et al., 2011; |[Booth et all2006). Although assessing forecast
performance of introduced methods has recently become more popular (e.g. [Li et al. [2013; Bohk-Ewald|
land Raul, 2017} Basellini and Camardal [2019; |(Camarda) 2019)). However, validating a method’s forecast
performance has to rely on a large data basis (covering many mortality levels and patterns over age) to
be truly informative. We can only evaluate a method as being robust and broadly applicable if its overall
forecast performance across different mortality settings is high.

To reliably evaluate a model’s forecast performance we distinguish three analytical settings for two
common measures of mortality: life expectancy and life span disparity at birth (e.g. [van Raalte et al.|
[2018} [Vaupel and Romo}, [2003). Specifically, we analyze by how much a model’s forecast performance is
influenced by

1. average level of life expectancy and life span disparity in forecast years (as they represent mortality
settings with distinct patterns of mortality over age that may (or may not) be difficult to capture
by a forecast method).

2. annual rate of change in life expectancy and life span disparity in forecast years (as they represent
mortality settings with different levels of mortality improvement that may (or may not) be difficult
to capture by a forecast method).

3. trend change in life expectancy and life span disparity between recently observed years and forecast
years (as they represent mortality settings with abrupt changes in mortality improvement from
recently observed to forecast years that are difficult to capture for each forecast method).

We analyze a model’s forecast performance over many countries and time periods to discover stages
of mortality improvement that may be challenging to capture. Based on the comprehensive validation,
we would recommend to use a method only if its forecast performance turns out to be consistently high
across all three analytical settings for life expectancy and life span disparity in most recent years. For a
country of interest, we focus on the most recent years as they indicate how mortality will probably evolve
and if a selected method is likely to capture that.

The remainder of this paper describes data and methods in section 2 and depicts preliminary validation
results for the simple Lee-Carter model in section 3. Finally, we draw main conclusions in section 4.

2 Data & Methods

We use data from the Human Mortality Database (HMD, www.mortality.org). This open access database
is maintained by the Max Planck Institute for Demographic Research (Rostock, Germany) and the
Department of Demography at the University of California, Berkeley. The HMD provides high-quality



population and mortality data for 41 developed countries. For women and men, we extract mortality
rates (m) by single ages (z), 0 to 110 and above, from life table data. Based on our validation design,
which will be explained later on, we need a minimum of 60 consecutive years of data for a country in
our analysis. This reduces the number of eligible countries to 24 (see Table 1 in the Appendix for HMD
coverage of mortality data by country and calendar year).

For the beginning, we forecast mortality only with the Lee-Carter model (Lee and Carter, |1992). It
is defined as:
In Mgt = Qg + bzkt + €xt-

a, is the average of log death rates (m ) over time ¢, b, is the response at age x to change in the overall
level of mortality over time ¢, k; is the overall level of mortality in year ¢, and €, ; is an error term. We
use singular value decomposition to identify independent age patterns in m,; and their importance over
time in the base period. To forecast mortality (my ) with the Lee-Carter model, we fix the estimated
age-parameters a, and b, and extrapolate the time-varying parameter k; using a time series model. The
main assumption of the Lee-Carter method (and extrapolation approaches in general) is that past trends
will persist in the future.

We adopt an out-of-sample validation design to assess Lee-Carter’s forecast performance. Meaning,
we withhold observed mortality data for some calendar years to later compare them with corresponding
mortality forecasts. Specifically, for each of the 24 countries, we forecast death rates (m,) one to 30 years
ahead as often as the available mortality data allows. We set the base period (of data used as input for
the forecasts) to 30 years. For example, for a country with mortality data available for 70 calendar years
(t1,...,t70), we generate a total of 12 forecasts, starting with jump-off years tso, t31,...,%41.

We calculate two different mortality measures based on the m,-forecasts: life expectancy at birth (eg)
and life span disparity at birth (eg). Bohk-Ewald et al.|(2017) argue that mortality forecast methods not
only need to capture the change in life expectancy, but also the variation in the life span distribution,
e.g. the compression, shifting, and expansion of mortality. Therefore, we included eg in our analysis, in
addition to eg. Prospectively, we will extend the analysis to mortality measures at further ages, e.g. life
expectancy and life span disparity at age 65, to assess the performance of the forecast methods at higher
ages.

To quantify accuracy and bias of Lee-Carter forecasts, we calculate the forecast error e; = F; — Y5,
where F; is the forecast value and Y; is the observed value in year t. From this we derive the forecast
percentage error pe; = 100 % e;/Y;. A percentage error smaller than 0 indicates underestimation of
observed mortality, while a percentage error larger than 0 indicates overestimation. Therefore, the closer
the percentage error is to 0, the more accurate is a forecast. PE has the advantage of being scale-
independent, allowing us to compare a model’s forecast performance across different mortality levels
(Hyndman and Koehler} |2006). We analyze the overall forecast percentage error across all 24 countries
by jump-off year.

We use three analytical settings to quantify the sensitivity of overall forecast accuracy and bias in
terms of ey and eg to the different mortality levels and trends in the 24 countries. First, we plot the
forecast percentage error in relation to the mean value of mortality in the forecast horizon. This gives
us insight into whether there is at all a relationship between the overall level of mortality and forecast
accuracy and bias. Our goal is to see whether a forecast method can capture different levels of mortality
and their associated age patterns. Second, we assess whether the mortality trend over time plays a role in
the forecast performance. Meaning, how well can a forecast method capture moderate to strong mortality
changes (which can be positive or negative) in the forecast years? To do so, we calculate the annual rate
of change of mortality in the forecast horizon and plot it in relation to the percentage error. However,
this does not portray any changes in the development of mortality before and after the jump-off year that
might have occurred. Therefore, in a third step, we plot the percentage error in relationship to the trend
change. We define the trend change as the difference between the annual rate of change in the forecast
horizon and the annual rate of change in the base period. We perform all analyses separately for females
and males.

3 Preliminary Results

Figures [I] and [2 show the three analytical settings for Lee-Carter forecasts 20 years ahead according to
our validation design for females and males, respectively. The color gradient from black over purple and



orange to yellow depicts the range of jump-off years from 1780 to 1997. The time span of available data
differs by country (see Table 1 in the Appendix). Therefore, only a few countries (Sweden, Denmark,
Norway, Netherlands) represent the earliest jump-off years while a larger number of countries represents
more recent jump-off years. In all 6 individual panels of each Figure, we display the forecast percentage
error (PE) on the vertical axis. A PE larger than 0 indicates overestimation, while a value smaller than
0 shows underestimation. In each Figure, we show the PE for life expectancy at birth (ep) in the left

column and for life span disparity (e%) in the right column.

PE versus average level of ¢y and eg in forecast years In the top row of Figures and we plot
the PE in relation to the mean value of mortality in the forecast horizon of 20 years (horizontal axis) for
life expectancy at birth and life span disparity. Overall, we find that the mean level of ey appears to have
a smaller effect on the PE of Lee-Carter forecasts than the mean level of eg.

Specifically, the overall small PE of ey shifts horizontally to the right from earlier to recent jump-off
years (purple to yellow) and from low to high average levels of eg (35 to 85 years). At the same time, we
find that the variance of the PE for ey decreases for later jump-off years: while the Lee-Carter method
mostly underestimates life expectancy at birth slightly for mid-level jump-off years (red and orange) it
performs well in terms of forecast accuracy and bias for the most recent jump-off years (yellow).

Regarding the PE for eg, we find a backward shift, in the form of an arch, from high levels (25 years)
to low levels (10 years) of life years lost from earlier to recent jump-off years (black to yellow). We find
that the Lee-Carter method can not properly capture the often strong decrease in life span disparity in
the mid-level jump-off years (red and orange) and, consequently, tends to overestimate eg. Here, bias and
inaccuracy are even more accentuated than for e (PE up to +80% as opposed to +20%). However, for
the earliest and most recent jump-off years (purple and yellow), the Lee-Carter method produces accurate

and unbiased results for e(JS.

PE versus annual rate of change of ¢y and eg in forecast years The middle row of Figures|l{and
shows the relationship of the PE with the annual rate of change of ey and eg) in the forecast horizon
(fh) 20 years ahead. If the rate is smaller than 0, eg resp. eg have decreased in the forecast horizon. For
values larger than 0, ey and e(T) have increased. The larger the absolute value of the annual rate of change,
the stronger is the change in ey and eg (positive or negative) in the forecast years. Overall, we observe a
strong effect of the annual rate of change of eg and eg) on accuracy and bias of the Lee-Carter forecasts.

For early and mid-level jump-off years (purple to orange), the Lee-Carter method can not capture the
strong increase in life expectancy (40.5 to +1 years of life) in the forecast horizon. This results in forecast
inaccuracy and mostly underestimation of the true annual rate of change of eg. However, the Lee-Carter
method performs well for the most recent jump-off years (yellow) where there is a more moderate increase
in life expectancy (40 to +0.3 years of life) in many countries.

We see a similar relationship between the annual rate of change and PE for life span disparity at
birth. The larger the decrease in ezr) is (up to —0.5 years of life lost), the heavier is the overestimation of
the Lee-Carter forecasts (PE up to 80%). Moving towards an annual rate of change of 0 in the earliest
and most recent jump-off years (purple and yellow), the Lee-Carter forecasts become more accurate.

PE versus trend change in ¢y and eg between recently observed and forecast years In the
bottom row of Figures [I] and 2] we show the relationship of the PE with the trend change in mortality
from the base period (bp) to the forecast horizon (fh). If the annual rate of change in the forecast horizon
is smaller than the rate in the base period, the trend change is smaller than 0. If the annual rate of
change in the forecast horizon exceeds the rate in the base period, the trend change is larger than 0.
Trend changes in mortality are especially hard to capture in forecasts as they are always unexpected.
Overall, we find that trend changes appear to have a strong impact on the PE of ¢y and eg.

As we see from the plots, trend changes have happened for both life expectancy and life span disparity,
resulting in higher forecast inaccuracy especially in the early and middle jump-off years (purple to orange).
However, a trend change from smaller increases in life expectancy in the base period to larger increases
in life expectancy in the forecast horizon (positive trend change) effects the PE of ey more strongly than
a negative trend change. Further, positive trend changes in e are related to underestimation (PE up to
—70%) while negative trend changes rather cause overestimation (PE up to +40%). For the most recent
jump-off years (yellow), the Lee-Carter method gives more accurate results as the trend change is closer
to 0.

Trend changes in life span disparity take place particularly for mid-level jump-off years and range
from -0.4 to 0.4 (red to orange). Here, the negative relationship between PE of eg) and trend change is
even more accentuated than for the PE of eg. The Lee-Carter method penalizes strong negative trend



Figure 1: Performance of Lee-Carter model when forecasting female mortality 20 years ahead
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Figure 2: Performance of Lee-Carter model when forecasting male mortality 20 years ahead
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changes with severe overestimation (PE up to +60%) and positive trend changes with underestimation

(PE up to —20%). As the trend change for the most recent jump-off years is close to 0 (yellow), the

Lee-Carter model performs well in terms of forecast accuracy. However, we observe slight overestimation
T

of e.

Similar patterns for women and men With respect to the male population (see Figure , we
observe similar patterns in the relationship of the PE with the mean level, the annual rate of change,
and the trend change of ey and eg. However, the overall level of mortality is higher for males than for
females. Further, the variance in the PE for both ey and e(T) is larger for males compared to females.

Overall, our analyses show that the Lee-Carter method is suitable for forecasting mortality of the 24
HMD countries in the most recent years. For these cases, judging from the forecast percentage error,
the forecast results are mostly accurate and unbiased. The Lee-Carter method can not capture drastic
changes in the annual rate of change and strong trend changes, resulting in bias and loss of accuracy.
These characteristics apply to the mid-level jump-off years, were a transition from low-level to high-level
mortality has taken place.

4 Conclusion & Outlook

How can we objectively decide if a simple method is suitable to forecast mortality in a country of interest?
In recent decades, researchers have developed numerous mortality forecast approaches with increasing
levels of methodological complexity. Still, the Lee-Carter model (1992) is handled as a golden standard
due to robust forecast performance, despite being methodologically simple. Considering that so many
simple and also complex methods are available our study has two main goals. First, to establish validation
as test prior to mortality forecasting to confirm that a selected method is suitable. Second, to show that
the simple Lee-Carter model is broadly applicable, particularly in mortality contexts without substantial
trend changes and decisive shifts in the age at death distribution.

In this paper we have validated if the basic assumption of the Lee-Carter method holds in a country
of interest. Namely, that mortality changes in the forecast horizon will develop in the same way they
have had in the base period. Therefore, we have applied the Lee-Carter method to all available mortality
data for 24 countries of the Human Mortality Database according to our own validation design. We
have assessed forecast accuracy and bias of life expectancy and life span disparity at birth over all 24
countries by jump-off year in three analytical settings. First, we have analyzed the forecast percentage
error in relation to the mean level of mortality in the forecast horizon. Second, we have examined
how the percentage error reacts to mortality changes in the forecast horizon. Third, we have shown
the relationship between the percentage error and mortality trend changes from base period to forecast
horizon.

Based on our extensive validation results, we have found, most strikingly, that the Lee-Carter method
is indeed suitable to forecast mortality for many highly-developed countries in most recent years. More
complex methods, however, would have been more suitable than Lee-Carter’s model for jump-off years
1960 through 2000, when discontinuous mortality developments have been prevalent in many of those
countries. Caused by, for example, mortality developments such as the advancement of large survival
improvements from younger to increasingly older ages with ongoing time. Finally, we have shown that
validation serves as a meaningful first test to decide whether a method is likely to be appropriate to
forecast mortality in a country of interest.

Prospectively, we will deepen and extend our analyses in several ways. First, we will apply the
validation design to additional forecasting methods that are more complex. Second, we will use UN data
to increase the number of countries and to include, for example distinctive mortality levels and patterns
over age of less developed populations. Third, we will assess how sensitive a method’s forecast performance
is to the lengths of base period and forecast horizon. We will deepen the evaluation of accuracy and bias
using further error measures and we will also look at the coverage of prediction intervals. Finally, we will
explore forecast performance patterns by age and region. Doing so, we wish to define rules as guidance
for deciding whether a method is likely to be suitable to forecast mortality for a country of interest.
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Appendix

Table 1: HMD coverage of mortality data by country (group) and calendar years

Country group Country Code Available years
Northern America Canada CAN 1921 - 2016
USA USA 1933 - 2017
Australia & New Zealand Australia AUS 1921 - 2016
New Zealand total population NZL NP 1948 - 2013
Japan Japan JPN 1947 - 2017
Eastern Europe Bulgaria BGR 1947 - 2010
Czechia CZE 1950 - 2017
Hungary HUN 1950 - 2017
Slovakia SVK 1950 - 2017
Northern Europe Denmark DNK 1835 - 2016
Finland FIN 1878 - 2015
Ireland IRL 1950 - 2014
Norway NOR 1846 - 2014
Sweden SWE 1751 - 2017
United Kingdom total population GBR_NP 1922 - 2016
Southern Europe Ttaly ITA 1872 - 2014
Portugal PRT 1940 - 2015
Spain ESP 1908 - 2016
Western Europe Austria AUT 1947 - 2017
France total population FRATNP 1816 - 2017
Germany East DEUTE 1956 - 2017
Germany West DEUTW 1956 - 2017
Netherlands NLD 1850 - 2016
Switzerland CHE 1876 - 2016
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