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ABSTRACT: Rapid socio-economic development in India has been accompanied by gains in life 

expectancy and improvements in a range of health outcomes. However, it is uncertain how the fast 

pace of urbanisation, the aging of the population and climate change will alter this trend in the 

future. This study estimates the health co-benefits from projected changes in exposure to ambient 

fine particulates (PM2.5) in India up to 2050 and under alternative climate change mitigation and air 

quality abatement scenarios, considering future demographic change and urbanisation trends. A 

multi-dimensional cohort-component projection model is employed to explore dynamically over time 

the range of potential health impacts across urban and rural areas in all states of India. We show that 

pursuit of aspirational climate change mitigation targets can bring clear co-benefits from cleaner air 

by averting up to 10 million deaths and increasing life expectancy at birth by up to one year by mid-

century compared to business-as-usual. Combining these targets with policy measures that target air 

pollution explicitly can double these benefits to human health. The spatial distribution of the health 

burden from air pollution shows rural areas to be disproportionately affected despite lower 

concentrations and indicates substantial differences between states, driven by population size, 

baseline exposure and life expectancy as well as their progression over time. 
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1.  Introduction 
 

Rapid socio-economic development in India has been accompanied by gains in life expectancy 

and improvements in a range of health outcomes (KC, Wurzer, Speringer, & Lutz, 2018). 

Urbanisation has facilitated these trends by providing better opportunities for education and 

employment and improved access to infrastructure and services for the growing population of 

the country. However, when poorly planned and inadequately managed rapid urban growth can 

occur at the cost of growing public health challenges and environmental degradation. 

Aggravation of air pollution, road injuries, overcrowding and formation of informal settlements, 

land use change, associated with the urban heat island effect, are some of the most well-known 

public health risks encountered in the cities of many low and middle income countries (LMIC). 

 

India is not only one of the most rapidly urbanising countries in the world (1), but it also hosts 

13 of the world´s 20 cities with most polluted air (Purohit et al., 2019). In 2017, the Institute 

for Health Metrics and Evaluation ranked air pollution as the second most important contributor 

to mortality and morbidity in India, after malnutrition and dietary risks (2). Currently, 99.9 % of 

the population in India is estimated to live in areas, exceeding the World Health Organisation 

(WHO) Air Quality Guideline for fine particulate matter (PM2.5) of 10 µg/m₃ (GBD MAPS Working 

Group, 2018). Annual average exposure to PM2.5 in India has been increasing over the last 

decades (IHE, 2018; Dey & Girolamo, 2011). Considering that the country is still in the early 

stages of its economic development and is expected to experience strong population and 

economic growth, further industrialisation and urbanisation, accompanied by increased energy 

and fuel consumption, air quality is likely to remain an important policy concern in the future. 

This risk is even more pronounced given India´s current energy mix, which is largely dominated 

by coal (44 % of total energy demand), biomass (24 %) and oil (23 %) as opposed to natural 

gas (6 %), renewable (2 %) and nuclear energy (2 %) (International Energy Agency, 2016). 

 

The growing population and rapid urbanisation in India are expected to fuel future demand for 

energy and resources. Considering that the country is currently the third largest emitter of 

greenhouse gases (GHGs), after China and the US3, efforts for decoupling economic growth 

from increases in emissions in India will be pivotal for climate change mitigation globally. 

Furthermore, such efforts will have the more immediate benefits of improved air quality since 

many anthropogenic sources of air pollutants also emit CO2 and other GHGs. Climate change is 

also projected to alter ambient PM2.5 concentrations in India through changes in local and 

regional temperature, precipitation, humidity and circulation (UNEP, 2019; Pommier et al., 

2018b). However, these impacts are expected to be relatively smaller compared to the potential 

increases in anthropogenic emissions (Fang, Mauzerall, Liu, Fiore, & Horowitz, 2013; Kumar et 

al., 2018; Pommier et al., 2018a). Due to the close interlinkages between air quality and 

climate, investigating health impacts associated with both climate change mitigation and air 

quality controls can help identify important cost-effective measures for tackling these twin 

challenges. 

 

A realistic assessment of future climate change related impacts, including air pollution, requires 

not only advanced modeling and projections of environmental risks, but also consideration of 

                                                
1 According to UN projections the urban population in India is expected to grow by 404 million people between 2014 and 2050, 

compared to 292 million in China and 212 million in Nigeria. Overall, these three countries are projected to account for 37 % of the 
nearly 2.5 billion increase in the world urban population by 2050 (UNDESA, 2014). 
2 http://www.healthdata.org/india (accessed September 13, 2019). 
3 https://www.carbonbrief.org/the-carbon-brief-profile-india (accessed September 30, 2019). 

http://www.healthdata.org/india
https://www.carbonbrief.org/the-carbon-brief-profile-india


future demographic and human capital transitions  as well as their potential interactions with 

environmental hazards. This is particularly the case for LMIC such as India, which are not only 

recognised as highly vulnerable to climate risks (Watts, Adger, & Agnolucci, 2015), but also 

expected to experience dramatic socio-economic and demographic transformations in the next 

decades. The population in the India is projected to grow from 1.2 billion in 2011 to almost 1.7 

billion in 2050 (KC et al., 2018), while the share of the urban population is expected to reach 

52.8 % by 2050 from 31.3 % in 20114. While these trends will have paramount implications for 

economic growth, energy use and GHG emissions, they will also directly alter environmental 

health risks by increasing baseline population exposed to outdoor air pollution, especially to the 

extremely high levels found in many urban centers in India. The rising levels of cardio-

metabolic diseases and the ageing of the population, associated with the undergoing 

demographic and epidemiological transition in India, are likely to further amplify the adverse 

health impacts of air pollution and other climate-related risks by increasing the share of those 

most vulnerable (Dandona et al., 2017). Thus, understanding the potential interplay of 

population dynamics and environmental health hazards such as air pollution is crucial for 

reducing a major source of uncertainty in future climate change vulnerability assessments 

(Madaniyazi, Guo, Yu, & Tong, 2015). Projections which explore these interactions at sub-

national level are particularly needed to help determine regional or local priorities for improving 

public health through air pollution control, urban development and adaptation measures.  

 

Although most projections on future health burden under different emissions and/or climate 

change scenarios have focused on countries in Northern America, Europe or the globe as a 

whole (Madaniyazi et al., 2015), in recent years there have been an increasing number of 

studies on LMIC, including India. Scenario analysis in relation to air pollution for India has 

focused either on the country level (Chowdhury, et al., 2019; Chowdhury, et al., 2018; 

Conibear, et al., 2018b; International Energy Agency, 2016; Pommier et al., 2018; 

Venkataraman et al., 2017) or on specific cities (Dholakia, Purohit, Rao, & Garg, 2013). 

Conibear et. al. (2018) used a high-resolution online-coupled model to investigate the impact of 

different air pollution control pathways on ambient PM2.5 concentrations and human health in 

India. Although the study found substantial health benefits of stricter air quality control, it 

showed that even under an aspirational scenario with reduction in concentrations, premature 

mortality from PM2.5 exposure is set to increase due to population growth and aging. Chowdhury 

(2018) projected the mortality burden in India associated with future ambient PM2.5 exposure 

under different climate change and socio-economic and demographic scenarios at national 

level. However, both studies did not consider sub-national variations in air pollution levels (Dey 

et al., 2012) and baseline rates of cardio-metabolic disease in the country (Dandona et al., 

2017). Chowdhury et al (2019) modeled seven different scenarios of mitigating household PM2.5 

sources –– biomass for cooking, space –– and water-heating, and kerosene for lighting – and 

demonstrated that the Indian National Ambient Air Quality (NAAQ) standard is achievable 

though a cleaner energy transition of households and could translate to ∼13% reduction in 

premature mortality from ambient PM2.5. Another recent study funded by the Health Effects 

Institute provides a comprehensive assessment of the current and future burden of disease 

attributable air pollution from major source sectors, including at regional level, considering 

future mortality projections and three future emission scenarios (GBD MAPS Working Group, 

2018). Without further action to curb emissions the study projects deaths attributable to 

ambient PM2.5 to reach 3.6 million in 2050 compared to nearly 1.1 million deaths in 2015, while 

aggressive action is estimated to avert 1.2 million deaths. The study also suggests increases in 

                                                
4 United Nations. World Urbanisation Prospects 2018. Country profiles – India. https://population.un.org/wup/Country-Profiles/ 

(accessed September 13, 2019). 

https://population.un.org/wup/Country-Profiles/


mortality attributable to air pollution even with reductions of air pollution as a result of 

population growth and aging. 

Most of the aforementioned studies consider projected changes in the size and the structure of 

the population. However, future mortality rates and population estimates in the models they 

use are exogenous and based solely on assumptions of future demographics, i.e. they presume 

the same future mortality rate and total number of deaths under alternative emission scenarios 

and attribute a certain population fraction of these deaths to air pollution. This approach is 

somewhat justifiable when the hazard risks from air pollution are very low and health impacts 

are assessed in the near future. However, it can be misleading for settings with high air 

pollution and associated hazard risks and for long term predictions since changes in mortality 

and survival population induced by changes in exposure are not considered (Miller & Hurley, 

2003). Sanderson et. al (2013) addressed this limitation by incorporating the “feedback effect” 

of changes in air pollution on future mortality rates. However, the study reported health 

impacts for the whole of India and did not consider urban and rural differentials. Recognising 

this gap, we linked the MESSAGEix-GLOBIOM integrated assessment model (IAM) framework, 

the GAINS air quality model and the five-dimensional cohort component projection for India (KC 

et al., 2018) to analyse dynamically over time the health co-benefits from air pollution reduction 

under alternative climate change mitigation and air pollution abatement scenarios at sub-

national level and for urban and rural residence. 

2.  Methods 
 

 

2.1 Ambient PM2.5 concentrations 

 

Gridded annual ambient fine particulate matter (PM2.5) concentrations (2010-2050) on a five-

year interval for the period 2010-2050 are derived from the Greenhouse-Gas Air Pollution 

Interaction and Synergies (GAINS) model. GAINS is an established model for exploring 

synergies and trade-offs between air pollution control and global greenhouse gas emissions 

mitigation (Amann et al., 2011; Li et al., 2019; Rafaj, Kolp, Rao, Klimont, & Schopp, 2010; 

Rafaj, Schöpp, Russ, Heyes, & Amann, 2013; Shindell et al., 2012). It represents one module in 

the International Institute for Applied Systems Analysis´s (IIASA) Integrated Assessment Model 

(IAM) framework, also referred to as MESSAGE-GLOBIOM. The future air pollution trajectories 

analysed herein are estimated in GAINS on the basis of exogenous projections of anthropogenic 

emissions and economic activities (e.g. energy consumption, industrial production, transport, 

and agriculture projections) developed under the energy, land use, economy and climate 

modules in the IIASA IAM framework5. The activity and emissions data from the IAM are 

combined with source-specific emission factors and source-receptor relationships of aerosol 

precursors to arrive at estimates of PM2.5 concentrations. Our analysis is based on India-specific 

version of the GAINS model, where the national energy and emission projections are 

disaggregated across 23 main sub-regions of the country. The approach of modelling PM 

concentrations follows the methodology described by Purohit et al. (2019). GAINS uses linear 

transfer coefficients, describing the spatial response of an air quality indicator to changes in 

precursor emission at each source throughout the model domain, which have been derived 

from the European Monitoring and Evaluation Programme (EMEP) chemistry transport model 

(Simpson et. al, 2012) . The model estimates ambient PM2.5 concentrations from the following 

                                                
5 International Institute for Applied Systems Analysis. MESSAGE-GLOBIOM. https://data.ene.iiasa.ac.at/message-globiom/ 

(accessed September 13, 2019). 

https://data.ene.iiasa.ac.at/message-globiom/


sources: (i) primary ambient particulate matter emitted directly to the atmosphere from 

anthropogenic sources, (ii) secondary particulate matter formed in the atmosphere through 

chemical reactions of precursors gasses such as SO2, NOx and NH3, (iii) particulate matter 

originating from natural sources such as solid dust, sea salt and biogenic sources. PM and its 

precursor emissions are estimated at a 0.50×0.50 longitude–latitude resolution (Klimont et al., 

2017), based on relevant proxy variables.  

 

To determine concentrations for urban and rural areas, the gridded PM2.5 concentrations were 

intersected with urban polygon shapes from Global Rural-Urban Mapping Project6 (GRUMP), 

250m gridded population data from the Joint Research Centre (JRC) and 100x100m gridded 

population data from the WorldPop project7 by researchers in the Air Pollution group in IIASA. 

Urban regions were defined as towns and cities with >100,000 inhabitants and densities >1000 

people/km2 and the rest were classified as rural. The urban-rural distribution from the gridded 

data resulted in 2 % higher rural population compared to the 2001 population distribution from 

the India census. To ensure consistency, 2 % of the rural areas were reclassified as urban. 

 

It should be noted that the urban-rural designation used for the exposure differs from the 

official India census classification, applied in the population projection. In the latter, 

administrative units are defined as urban when they have (i) minimum 5,000 inhabitants; (ii) at 

least 75% of the male working population employed in non-agricultural work; and (iii) 

population density of at least 400 people per square kilometre8. 

 

Population-weighted exposure for a given year and emission scenario was calculated separately 

for urban and rural areas within each state as follows: 

 

𝑃𝑊𝐸𝑗 =
∑ 𝑃𝑖,𝑗𝐶𝑖,𝑗 

𝑛
𝑖=1

∑ 𝑃𝑖,𝑗
𝑛
𝑖=1

 

 

where 𝑃𝑊𝐸𝑗 denotes the domain of interest (all urban/rural areas within each state), 𝑃𝑖,𝑗 is the 

population and 𝐶𝑖,𝑗 the PM2.5 the concentration in each grid cell within this domain. Smaller 

states have been grouped together when estimating population-weighted exposure. The 

population-weighted PM2.5 exposure for all years was based on the 2000 population, therefore 

population growth over time was not considered. As pointed out by Stedman, King, Holland, & 

Walton (2002) the population-weighted mean would not change by increases in the absolute 

size of the population (numerator and denominator will both increase by a constant factor), but 

will be affected by the changes in the distribution of the population relative to the distribution of 

particles (e.g. internal migration). 

 

2.2 Scenarios 

 

The energy pathways analysed in this paper are developed within the Linking Climate and 

Development Policies − Leveraging International Networks and Knowledge Sharing (CD-LINKS) 

project9. The population and GDP projections driving the emissions across all the CD-LINKS 

scenarios are based on SSP2, which is in line with the population projections used in our 

                                                
6 NASA. Global Urban Mapping Project (GRUMP) versión 1. https://sedac.ciesin.columbia.edu/data/collection/grump-v1 (accessed 

September 13, 2019). 
7 Worldpop. https://www.worldpop.org/ (accessed September 13, 2019). 
8 Inda census 2011 http://www.censusindia.gov.in/2011census/HLO/Metadata_Census_2011.pdf 
9 International Institute for Applied Systems Analysis. CD-LINKS Scenario Database (version 1.0). 

https://db1.ene.iiasa.ac.at/CDLINKSDB/dsd?Action=htmlpage&page=about (accessed September 13, 2019). 

https://sedac.ciesin.columbia.edu/data/collection/grump-v1
https://www.worldpop.org/
http://www.censusindia.gov.in/2011census/HLO/Metadata_Census_2011.pdf
https://db1.ene.iiasa.ac.at/CDLINKSDB/dsd?Action=htmlpage&page=about


analysis. The scenarios analysed are summarised in the table below. NPi is a our reference 

scenario, which models the implementation of currently announced targets for climate, energy 

and development policies up to 2030 and equivalent effort to no climate policy beyond 2030. 

The INDC scenario assumes that policy commitments specified in countries´ Nationally 

Determined Contributions (NDCs) are duly implemented by 2030, but no further intensification 

of emission reduction commitments beyond this 

 

Table 1. Scenario definitions 

Scenario  Description  

NPi  National Policies until 2030, no climate policy after 2030 

INDC  National Policies until 2020, after which implementation of Nationally 
Determined Contributions (NDCs) until 2025/2030  

2° C  National Policies until 2020, after which mitigation measures in line with   a 

>66% chance of staying below 2°C throughout 21st century  

1.5° C  National Policies until 2020, after which mitigation measures in line with a 
>66% chance of staying below 1.5°C in 2100  

INDC – 
MFR 

  
 

Same as above, but combined with the implementation of measures for 
maximum feasible reduction of air pollution  2° C – 

MFR 

1.5° C - 

MFR 

 

point is undertaken. The more aspirational scenarios of 2° and 1.5° are based on the NPi 

scenario. They stipulate implementation of national policies until 2020 and radical policy action 

for transitioning to global CO2 budgets consistent with limiting global long-term temperature 

increases to 2°C and 1.5° C thereafter (cumulated 2011-2100 global CO₂ budget of 1,000 GtCO₂ 

and 400 GtCO₂ for the 2° and 1.5° targets, respectively). The IIASA IAM allows determining a 

portfolio with the most cost-effective mitigation measures to stay within the respective carbon 

budgets. More detailed information about the CD-LINKS scenarios and their modelling can be 

found in McCollum et al. (2018). We analyse three additional air pollution scenarios for India, 

simulated in the GAINS model. These correspond to the CO2 emission mitigation pathways 

described above, but on top of them they simulate the implementation of explicit air pollutant 

control measures (GAINS simulates over 1000 technical control measures, including structural 

measures and end-of-pipe solutions such as improved cooking stoves, flue-gas desulfurization, 

ban on open burning of agricultural residues, improved emission standards for vehicles, etc.). 

Based on these set of available emission control options GAINS estimates the maximum feasible 

reduction (MFR) of air pollutants, taking into account commercially available technology- and 

country-specific circumstances. 

 

2.3 Population projections 

 

To estimate how changes in air pollution will affect future life expectancy, mortality as well as 

the structure and size of the population we use the five-dimensional population projection for 

India developed by KC, Wurzer, Speringer, & Lutz (2018) at the Wittgenstein Centre for 

Demography and Global Human Capital (IIASA,VID/ÖAW, WU). Their cohort-component model 

projects India´s population by state, rural/urban place of residence, age, sex and level of 



education, with differential fertility and mortality rates applied. The authors have shown that 

explicitly incorporating these sources of population heterogeneity in the projection model for 

India produces different total population size forecasts than the conventional approach of only 

considering the age and sex structure of the population at national level. For instance, including 

a breakdown by level of education tends to lead to lower projected population size because of 

the stark improvement of educational attainment, especially for women, in India over time and 

the well-established negative association between women´s education and fertility rate (KC et 

al., 2018). On the other hand, failing to account for regional heterogeneities, especially in a 

country with such strong regional differences in fertility rates such as India, might skew 

population projections downwards. 

 

The population projection we use has been built on tabulations from the two most recent Indian 

censuses (2001 and 2011) and vital rates from the India Sample Vital Registration System 

(1999-2013). The definition of urban inhabitants used in the projection is in accordance with 

the 2011 Census definition as outlined above. Assumptions of future trajectories of fertility, 

mortality, education and urban-rural migrations are based on observations of past trends as 

well several rounds of consultations with population experts (Kc & Lutz, 2017). Regarding sub-

national differences of mortality, the projection model assumes convergence in the rate of 

change of sex-specific life expectancy to the national predicted average until 2030 and constant 

rate of change in the future. A detailed explanation of the method and the data sources used in 

the population projection can be found in the Appendix of KC et al. (2018). 

 

2.4 Exposure response function 

 

To quantify the health impacts of exposure to outdoor fine particulate matter (PM2.5) we apply 

the recently developed Global Exposure Mortality Model (GEMM) (Burnett et al, 2018): 

 

𝐻𝑅(𝑧) = exp {
θ log (

z
α

+ 1)

1 + exp {−
(z − μ)

v
}
},  

 

where HR denotes the mortality hazard ratio (relative risk of mortality at any concentration 

compared to the counterfactual concentration of 2.4μg/m3) for a specific annual exposure to 

PM2.5, z is population-weighted PM2.5 exposure (z = max (0, PM2.5 − 2.4μg/m3 ) and 𝜃, 𝑧, 𝛼, 𝜇 are 

age-specific and disease-specific parameters. Below the counterfactual, which is selected as the 

lowest observed concentration in any of the 41 cohorts included, GEMM assumes no change in 

the hazard ratio. Compared to former assessments, which are based on hazard ratio models 

that draw risk information from multiple PM2.5 sources (outdoor and indoor air pollution from 

use of solid fuels and second-hand and active smoking) and, therefore, require strong 

assumptions about equivalent exposure and toxicity, GEMM is based solely on studies of 

outdoor air pollution and incorporates direct evidence from a much larger range in exposure 

than any other study (15–84 μg/m3). This function represents considerable deviation from the 

integrated exposure response function (IER) currently used by the Global Burden of Disease 

(GBD) also because of its near-linear shape at higher concentrations. Since the observed effects 

are reported only for concentrations up to 84 mg/m3, similarly to Burnett et al (2018), we have 

extrapolated the GEMM curve to account for the higher PM2.5 concentrations found in urban 

areas in India. As shown in Figure 1, beyond the observed exposure range (84 μg/m3) the 

hazard ratio shows a diminishing increase with increases in concentrations. The shape of the 

exposure-response function beyond the observed range is a major source of uncertainty and 



gap in the literature, which calls for more epidemiological studies in high exposure settings. The 

age-specific GEMMs were used to adjust future adult (>25 y) mortality rates in the population 

projection to the projected changes in air pollution under each scenario. Cardiovascular risk 

factors, including PM2.5 are shown to decline with age, hence the declining age gradient in 

magnitude of the hazard ratio on Figure 1 (Burnett et al., 2018; Singh et al., 2013). Due to the 

lack risk estimates for age groups <25 years, we could not account for the health impacts on 

younger cohorts. This is an important limitation, considering that up to 6 % of childhood 

mortality (5-15 years of age) has been attributed to lower respiratory infections from air 

pollution10. 

 

Figure 1. Global Exposure Mortality Model Non-Communicable Diseases Plus Lower Respiratory 

Infections (GEMM NCD+LRI) predictions over observed concentration range by age group 

(2.4μg/m3 to 84 μg/m3) (values until dashed red line). Exstrapolation beyond range of exposure 

(84 μg/m3 to 150μg/m3) (values beyond dashed red line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that the GEMM function refers to deaths from non-communicable diseases 

and lower respiratory infections. Although these accounted for most non-accidental deaths 

(>99%) in the 41 cohorts included in the GEMM and for about 94 % in all high income 

countries11, their share in LMIC such as India is lower. Estimates differ, but according to IHME 

these two cause categories accounted for 61 % of all deaths in India in 2011 and 67 % in 

201612. Due to the large health and socio-economic inequalities between states, the burden 

from LRI+NCD is also very unevenly distributed across the country, ranging from 59 % of all 

deaths in the north-eastern states of Bihar and Odisha to 85 % in the southern state of 

Kerala13. There also likely to be differences between urban and rural areas – for instance, 

according to the 2011 India census NCD accounted for 57 % of all deaths in urban areas, but 

only 47 % in urban areas14. Therefore, we recognise that our calculations might overestimate 

the total number of attributable deaths, especially in rural areas and sub-national states with 

lower socio-economic conditions, where the proportion of communicable diseases is higher. 

Consideration of disease patterns would be important, but might add further uncertainty ― data 

on cause-specific mortality in India is highly unreliable (Mikkelsen et al., 2015), with the 

majority of deaths taking place at home without a medically certified cause, and future 

projections of changes in disease pattern highly uncertain. 

 

                                                
10 https://vizhub.healthdata.org/gbd-compare/ (accessed September 28, 2019). 
11 https://gbd2016.healthdata.org/gbd-search/ (accessed September 28, 2019). 
12 https://gbd2016.healthdata.org/gbd-search/ (accessed September 28, 2019). 
13 https://vizhub.healthdata.org/gbd-compare/india  (accessed September 28, 2019). 
14 http://www.censusindia.gov.in/vital_statistics/causesofdeath.html (accessed September 28, 2019). 

https://vizhub.healthdata.org/gbd-compare/
https://gbd2016.healthdata.org/gbd-search/
https://gbd2016.healthdata.org/gbd-search/
https://vizhub.healthdata.org/gbd-compare/india
http://www.censusindia.gov.in/vital_statistics/causesofdeath.html


2.5 Estimation procedure 

 

We linked all the diverse set of models described above in an integrated framework (see Figure 

2). The assessment of the health impacts proceeded in several steps. First, we considered the 

demographic projection for India developed by as our baseline. This approach follows a similar 

methodology to the one described by Miller & Hurley (2003) and applied by Stedman, King, 

Holland, & Walton (2002) and Sanderson et al. (2013), with the difference that we use a non-

linear exposure response function and a multi-state demographic projection. We made the 

important assumption that future trends in mortality rates in the baseline did not consider how 

air pollution might evolve, but were based solely on most likely changes of demographic 

factors. Since the observed mortality rates in the base year 2010 account implicitly for the 

impacts of air pollution on mortality, our assumption entails air pollution constant to 2010 level 

in the baseline projection. The limitation of this assumption is that future trajectories of 

mortality rates in the baseline might implicitly account for air pollution effects to the extent to 

which the former are based on past trends. In the next step we re-ran the population projection 

six times for each emission scenario, adjusting age-specific mortality rates for each state and 

urban/rural residence to the changes in hazard risk from 2010, associated with the projected 

changes in PM2.5 concentrations over time. The scaling of mortality rates was performed every 

five-year period as follows: 

 

𝑚𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒
𝑠𝑐𝑒𝑛 (𝑡) = 𝑚𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒

𝑏𝑎𝑠𝑒 (𝑡)
𝐻𝑅𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒(𝑡)

𝐻𝑅𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒(2010)
 

 

where 𝑚𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒
𝑠𝑐𝑒𝑛  indicates the age-, urban/rural residence- and state-specific mortality 

rate in the respective emission scenario and  𝑚𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒
𝑏𝑎𝑠𝑒  in the baseline scenario, 

accordingly. 𝐻𝑅𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒 denotes the age-specific hazard ratio associated with the PM2.5 

exposure in each domain (urban/rural residence and state). The population projections under 

each scenario were implemented in R using version 0.0.4.1 of the MSDem (Multi‐State 

Demography) package15.  

 

The rescaling of the mortality rate assumptions for each emission scenarios entails changes in 

survival population over time and hence distinct population size, structure and life expectancies. 

We used the projected all-cause number of deaths and population size broken down by age, 

sex, level of education, residence and state from the MSDem outputs and a standard life table 

method to estimate changes in sex-specific life expectancy at birth e0 for the urban and rural 

areas in each sub-national  state and for each future scenario over time. The population 

projections in each emission scenario were based on the same assumptions of future 

demographic components such as mortality, fertility, migration and education. Hence, any 

differences in life expectancy at birth, in the size and structure of the population as well as the 

number of deaths between scenarios were only due to the changes hazard risk associated with 

the respective changes in annual average population-weighted PM2.5 exposure. 

 

 

 

 

 

 

                                                
15 Marcus Wurzer, Samir KC, Markus Speringer. Multi-state Demongraphy (version 0.0.4.1). https://r-forge.r-

project.org/R/?group_id=2281 (accessed June 07, 2019). 

https://r-forge.r-project.org/users/mwurzer/
https://r-forge.r-project.org/users/samirkc/
https://r-forge.r-project.org/users/msperinger/
https://r-forge.r-project.org/R/?group_id=2281
https://r-forge.r-project.org/R/?group_id=2281


Figure 2. Proposed integrated modeling framework 

 

 
 

 

We were interested in comparing the results of the dynamic estimation of the health burden 

with the static health impact assessment approach that most of the existing projection studies 

are using. In the conventional approach mortality due to air pollution is quantified as a fraction 

of total mortality that can be attributed to the exposure to PM2.5: 

 

𝑀𝑎𝑡𝑡𝑟(𝑡) = 𝑃𝑜𝑝(𝑡)𝑚(𝑡)
𝐻𝑅(𝑡) − 1

𝐻𝑅(𝑡)
 

 

where Pop is the population size and 𝑚 is the baseline mortality rate for a specific year. In this 

approach, future mortality rates and population estimates are based on assumptions of future 

demographics only and do not change across emission scenarios, only the proportion of deaths 

that can be attributable to air pollution changes. This method can be misleading for long term 

predictions since it does not consider changes in mortality and survival population induced by 

changes in exposure. The reference point of this static estimation is a counterfactual where air 

pollution is at its theoretical minimum, below which no health effects are assumed. 

 

To compare this method with the dynamic approach, we also ran the population projection and 

estimated changes in life expectancy under a counterfactual scenario of theoretical minimum 

risk exposure level to PM2.5 (<2.4 μg/m3), beyond which no health effects are assumed16. In 

other words, this is a hypothetical scenario where ambient air pollution is eliminated as a health 

risk factor and the risk-deleted mortality rate reflects the rate that would be observed if PM2.5 

exposure levels were brought to their theoretical minimum. For each future year the mortality 

rate was calculated as follows: 

 

𝑚𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒
𝑠𝑐𝑒𝑛 (𝑡) =

𝑚𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒
𝑏𝑎𝑠𝑒 (𝑡)

𝐻𝑅𝑎𝑔𝑒,𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒,𝑠𝑡𝑎𝑡𝑒(2010)
 

                                                
16 Based on the GEMM model described above. 



 
While comparison of the baseline scenario with the emission scenarios provides estimates of 

health impacts due to changes in PM2.5 after 2010, the comparison with the counterfactual 

scenario shows total health impacts attributable to PM2.5. The two approaches are conceptually 

different – the former method quantifies health outcomes that can be reached with changes in 

current policy and the latter quantifies the total burden of PM2.5, even though completely 

eliminating PM2.5 particles is not realistic. The advantage of the counterfactual approach is that 

it allows more easy comparison with other studies, which have, for the most part, estimated the 

health burden from PM2.5 with reference to the counterfactual. 

 

3.  Results 
 

3.1 PM2.5 concentrations pathways 

 

Figure 3 below depicts the estimated average annual-population weighted PM2.5 exposure over 

time under each emission scenario for India as a whole and separately for all urban and rural 

areas. The differences in PM2.5 concentration pathways across scenarios seem broadly in line for 

all three levels of aggregation. With only implementation of current legislation (NPi scenario) 

PM2.5 concentrations are projected to increase steadily over time and more rapidly for urban 

areas (after their reduction up to 2020 in urban areas). Implementation of Nationally 

Determined Contributions (NDC) does not bring any further reduction in concentrations than 

the NPi scenario.  

 

Under global mitigation efforts in line with the 2° target PM2.5 concentrations in India are 

projected to increase, but at a slower rate, up to 2040 and to start falling afterwards. In 

contrast, CO2 reductions in accordance with the 1.5° target imply steady reductions in PM2.5 

concentrations in India over time. The largest reductions in concentrations over time, however, 

are achieved in the scenarios combining climate change mitigation efforts with maximum 

feasible controls for air pollutants (MFR scenarios). As seen from Figure 3, PM2.5 concentrations 

in all the MFR scenarios either start to decrease at a slower rate (2° - MFR and 1.5° - MFR) or 

slightly increase (INDC-MFR) beyond the year 2040. This might be due to depletion of air 

pollution controls, particularly the diminishing impacts of controls on industry plants, and the 

eventual rebound of air pollution emissions due to the increase in economic activities and 

population growth.  

 

The small difference in MFR concentrations across scenarios implies that air pollution-specific 

controls alone have a substantial potential for limiting air pollution. Therefore, better 

coordination of climate change mitigation policies with air quality controls can bring much 

greater benefits for air pollution reduction then pursuing these independently as is often the 

case. It should be noted that even under the most aspirational scenarios, PM2.5 concentrations 

still remain relatively high compared to other countries (Cohen et al., 2017). This might be 

partly explained by the high starting point of concentrations as well as natural background and 

transboundary concentrations from other countries, which have been shown to be significant 

for India and other countries in the region (UNEP, 2019; Purohit et al., 2019;David, et al., 

2018) 

 

 

 

 



 

 

Comparing the concentration 

pathways in rural vs. urban areas, 

a stark reduction in PM2.5 

concentrations can be observed in 

the 2010-2020 period in urban 

areas against the steady increase 

in rural areas. This might be due 

to current national legislation, the 

implementation of which is 

modeled across all scenarios up to 

the year 2020, affecting PM2.5 

sources in urban areas the 

quickest (e.g. industry plants). 

Overall, larger potential for 

reduction in concentrations can be 

seen in urban areas in India. It is 

notable that under the most 

inspirational scenarios average 

PM2.5 exposure in urban areas in 

India in 2050 can reach the levels 

observable in rural areas today 

(~30µg/m3). 

 

 

3.2 Changes in life expectancy 

 

In the period 2010-2050 average life expectancy at birth for both females and males in India is 

projected to increase by at least 8 years under all scenarios. This is not surprising considering 

the future development prospects in the country and the associated catching-up in life 

expectancy with higher income countries as a consequence of a range of factors, including 

wider reach of healthcare access, reduced poverty, improved nutrition and drinking water and 

others. However, there are substantial differences in the projected life expectancy trajectories 

across emission scenarios as a result of deaths being brought forward or delayed as a result of 

changes in air pollution exposure. With continuation of current policy and no further efforts for 

mitigating climate change globally or addressing air pollution locally (NPi scenario), the increase 

in average life expectancy at birth between 2010 and 2050 is projected to be 9 years for 

females and 7.5 years for males from the starting 68.5 and 65.1 years, respectively. 

 

In contrast, in the most aspirational scenario (1.5° – MFR) life expectancy for females and 

males in the same period could increase by 10.9 and 9.7 years, respectively. This implies a 

potential of increasing the average life expectancy of children born in 2050 by up to 2 additional 

years compared no further emission control (74.8 vs. 72.6 years for females and 79.4 vs.77.5 

years for males). The average lifespan forecasts in the rest of the scenarios fall in between, 

again without a significant difference between the INDC and NPi scenario, but the potential for 

increasing life expectancy at birth through air pollution reduction is more limited through 

mitigation of CO2 emissions only. Our estimates show that pursuing the 2° and 1.5° targets can 

still bring increases in life expectancy through improvements of air quality, but in the year 2050 

Figure 3. Average annual population-weighted PM2.5 

exposureby emission scenario 

 



these would be in the magnitude of 1 year or less compared to NPi (0.9 years under 1.5° and 

0.5 years under the 2° scenario for females and males combined). 
 

Figure 4. Life expectancy at birth by scenario 

 

 
Comparison with the counterfactual scenario shows the total losses in average life expectancy 

attributable to air pollution. In 2010, exposure to PM2.5 reduced average life expectancy by 3.3 

years for females and 3.7 years for males. In the most aspirational scenario this gap is 

projected to fall to 1.6 years for females and 2.0 years for males, while without further efforts it 

is expected to increase to 3.4 for females and 4.2 years for males. 

 

3.3 Deaths attributable to air pollution 

 

We also show the health co-benefits related to air pollution reduction from climate change 

mitigation as number of lives that could be saved (Figure 5). The number of avoidable deaths 

from PM2.5 in the period 2010-2050 is estimated as the number of deaths projected to occur in 

the baseline (demographic) scenario (about 91 million in the whole period) minus those that 

would take place under a particular climate change mitigation and air quality control scenario. It 

should be emphasised that here we refer to realistically avoidable deaths on the basis of 

plausible reductions in CO2 emissions and PM2.5 concentrations from 2010 levels onwards and 

not to total deaths that could be avoided compared to an unrealistic counterfactual scenario of 

eliminating anthropogenic emissions almost completely to bring PM2.5 concentrations to the level 

with minimum observable health impacts (~2.4mg/m3). 

 

Implementation of measures stipulated in current and planned legislation, as well as 

commitments specified in the NDCs is not sufficient to reduce number of deaths from PM2.5 in 

India by mid-century. In particular, avoidable deaths from air pollution are projected to increase 

by 167 and 176 thousand per year on average, for the NPI and INDC scenarios, respectively.  

 

Figure 5. Cumulative number of avoidable deaths from air pollution 2010-2050 for six 

scenarios for India 



 

 

 

 

 

 

 

 

 

 
Pursuit of aspirational climate mitigation targets can bring clear health co-benefits: in the 2° 

scenarios avoidable deaths are projected to increase by only 58 thousand per year on average 

and in the 1.5° scenario the increasing trend of air-pollution-related deaths can be even 

reversed, with a projected decrease of 78 thousand per year on average within the same 

period. This implies that, compared to the NPi scenario, overall 4.7 million and 10 million deaths 

from air pollution could be reversed in the period 2010-2050 by limiting CO2 emissions in line 

with the respective climate change mitigation targets. The latter number is sizeable to the most 

recent estimates of the total burden of PM2.5 globally (~ 8.9 million).  

 

Figure 6. Mortality burden from PM2.5 by residence: A. Cumulative number of avoidable deaths 

from PM2.5 2010-2050 B. Population-weighted annual average number of avoidable deaths from 

PM2.5 2010-2050 

 

Similarly to life expectancy, we see that combing climate change mitigation efforts with 

measures targeting air pollution explicitly can yield maximum benefits for human health in the 

future: with the maximum possible take-up of air quality controls in India avoidable deaths from 

air pollution can decrease on average from 342 thousand per year in INDC-MFR scenario to 



around 480 thousand per year in the 1.5° – MFR scenario. Compared to the NPi scenarios, 

these translate in 20 to 26 million cumulative avoidable deaths over the period 2010-2050. 

 

Even though projected PM2.5 concentrations in rural areas are much lower than in urban areas 

(see Figure 3), without climate change mitigation rural areas are still expected to have  about 

two times larger number of cumulative avoidable deaths from air pollution in 2010-2050 (NPi 

and INDC scenarios). This might be due to the distribution of the population between urban 

and rural areas as well as the lower baseline life expectancy in rural India (KC et al., 2018). 

However, rural areas are disproportionately affected even when accounting for population size 

(Figure 6B). 

 

 

3.4 Regional differences 

 

The total mortality from air pollution is expected to be very unevenly distributed not only across 

urban and rural areas but also across states (Figure 7 and Figure 8). With continuation of 

current policy and without additional efforts for mitigation of climate change or air pollution 

control the highest number of avoidable deaths from air pollution in the period 2010-2050 will 

be concentrated in the rural areas located in the northern regions of Uttar Pradesh (more than 

1 million deaths), followed by Bihar and West Bengal (up to 0.5 million). 

 

Figure 7. Cumulative number of avoidable deaths from air pollution in rural areas, 2010-2050 

for a. scenario NPi and b. scenario 1.5° - MFR 

 

In reverse, these would be the regions with highest potential for reduction of premature 

mortality from air pollution, with maximum reduction in avoidable deaths ranging from 2.5 up to 

1 million in the 1.5° - MFR scenario. In contrast, rural areas in the most affluent southern 

regions of India, such as Tamil Nadu, Kerala and Karnataka, will experience the lowest 

increases. 

 

Uttar Pradesh will also be the region with highest expected number of cumulative avoidable 

deaths in urban areas, followed by urban centres in Maharashtra and Tamil Nadu and West 

Bengal – between 0.2 and 0.5 million. The underlying drivers of these spatial distributions are 

related to regional differences in population size, baseline mortality and PM2.5 concentrations as 

well as the evolvement of each of these factors over time. 

a. b. 



 

Figure 8. Cumulative number of avoidable deaths from air pollution in urban areas, 2010-2050 

for a. scenario NPi and b. scenario 1.5° - MFR 

 

3.5 Implications for population size and structure 

 

Since air pollution exposure affects mortality and population survival in the dynamic approach, 

different emission scenarios result in different total population size and structure. Although 

deviations from the baseline demographic projection are not significant given the large 

population of the country (see Figure 9), they still represent a substantial number. In the most 

aspirational scenario, the total population in the country is projected to be 20 million larger 

compared to a business-as-usual scenario (NPi) in the year 2050. In the hypothetical case of 

completely eliminating anthropogenic sources of PM2.5 population size would be even 50 million 

above the business-as-usual projections. 

 

Figure 9. Total population size in India, 2010-2050, by scenario 

 
Due to the demographic transition, the structure of the population will change as it starts to 

age. Although this is not immediately visible in the population pyramids (Figure 10), slight 

differences across scenarios can be observed. For instance, the share of the population aged 

a. b. 



65+ in India in the year 2050 is projected to reach 15.8 % under the NPi scenario and 16.8 % 

under the most aspiration scenario from 5.5 % in 2010. In the hypothetical scenario where air 

pollution is eliminated this share is projected to account for 17.9 % of the whole population in 

2050. 

 

Figure 10. Population distribution of India by sex, age and level of education in 2010 and 2050 

by scenario 

 

 

4.  Discussion  
 

We investigated the medium term health co-benefits from reduction in air pollution in India 

under alternative global and national emission scenarios, taking into consideration future 

demographic change and trends in urbanisation. We find compelling evidence for the health co-

benefits related to air quality improvement under the aspirational 2° and 1.5° climate change 

mitigation targets laid out in the Paris Agreement. In particular, efforts for limiting CO2 

emissions to reduce global mean temperatures to 2° and 1.5° could increase life expectancy at 

birth in 2050 by one year and half a year on average, respectively, compared to no further 

climate action than currently announced measures. In terms of mortality burden in the period 

2010-2050, this translates to an overall reduction of avoidable deaths from air pollution of 4.7 

million and 10 million for each scenario, respectively.  

 

We also demonstrated that maximum benefits for human health can be achieved by combing 

climate change mitigation measures with policies that explicitly target outdoor air pollution.  

Such policies could add between one and one and a half years additional gains in average life 

expectancy at birth in 2050 on top of the gains from global climate change mitigation. It should 

be acknowledged that these maximum feasible air pollution control scenarios are associated 

with considerable expenses, which might not make them immediately viable. However, they can 

be viewed as a potential upper bound of any policy efforts striving for stricter air quality control. 

Furthermore, previous studies on India have demonstrated that the economic costs of 

maximum feasible reduction policies would still be extremely low compared to the economic 



benefits of air pollution reduction associated with higher productivity through reduction in 

mortality and work absenteeism (Sanderson et al., 2013). Our results also highlight the 

importance of policy coordination to address the twin challenges of CO2 emission reductions 

and air quality improvements.  

 

Our analysis showed that in 2010 PM2.5 is associated with average decrement in life expectancy 

in India of 3.5 years and this could be reduced to 1.8 years by mid-century with the 

implementation of most ambitions climate change mitigation and air quality abatement 

measures. Apte et al. (2018) estimate the life expectancy impact of ambient PM2.5 to be only 

1.53 years for India. In contrast,  using the Air Quality Life Index (AQLI) developed by the 

University of Chicago's Professor in Economics Milton Friedman, Greenstone and Qing Fan 

(2018) calculate this decrement to be more than 4.3 years and up to 10 years the Delhi. These 

differences could be attributed to the shape and mortality causes included in the exposure 

response functions used, the mortality and air pollution data sources as well as the general 

methodology applied.  

 

We modelled the health impacts of changes in air pollution also across space and demonstrated 

substantial geographical differences in the health burden and its potential for reduction. 

Implementation of measures in line with the aspirational climate change mitigation scenarios 

can bring largest benefits related to air quality improvement over time for the population in 

rural India. Despite their lower air pollution levels, rural areas are more susceptible to the 

adverse air pollution impacts due to their larger population and lower baseline life expectancy 

compared to urban areas. Previous studies have already demonstrated the unequal burden of 

air pollution in urban and rural areas for some parts of India (GBD MAPS Working Group, 2018; 

Karambelas et al., 2018). The GBD MAPS Working Group (2018) estimated that as of 2015 the 

mortality burden in rural areas in India was three times larger than in urban areas and they 

projected this factor to increase to 5 in 2050 without further action and to 4 with aggressive air 

quality control. Using the same urban-rural designation as in this paper, Karambelas et al., 

(2018) find total excess mortality attributable to PM2.5 and O3 to be  three to five times larger in 

the rural regions of northern India, compared to the urban ones. The authors find the rural-

urban gap of health impacts to hold for all major PM2.5-related diseases (IHD, stroke, COPD and 

lung cancer), but not when accounting for population size, with somewhat greater rate for 

urban areas. In contrast, our results show higher health burden of air pollution even after 

controlling for population size. Part of this difference could be explained by the exposure-

response function used (non-linear and flattening at higher exposures vs near-linear) and 

variation in disease burden (NCD and LRI) between urban and rural areas. We only modelled 

impacts from changes in outdoor air pollution. However, future studies simulating the 

improvements in indoor air quality associated with the energy transitions in the climate change 

mitigation scenarios can demonstrate even greater health co-benefits in rural areas. Our results 

also confirmed recent evidence of the higher mortality burden from air pollution in the regions 

along the Indo-Gangetic Plains (Balakrishnan et al., 2019; Chowdhury & Dey, 2016; Conibear, 

Butt, Knote, Arnold, & Spracklen, 2018a), which could be attributed both to their larger 

population size and higher PM2.5 concentrations. Vast inequalities in health outcomes can be 

observed across different regions in India, with regional differences in life expectancy in the 

country ranging by up to 10 years in 201017. The spatial variations in the health burden from air 

pollution highlight the potential of climate change mitigation and air quality control for reducing 

some of the urban-rural and regional health inequalities in the country.  

 

                                                
17 Own calculations based on tabulations from Samir KC 



We demonstrated that climate change mitigation and air policy control will also have some 

implications on the future size and structure of the population in the country. Most aspirational 

policies will contribute to reducing number of deaths and improving life expectancy, which will 

also have the effect of increasing population size and the share of the elderly. Therefore, while 

public policy strives to improve population health and prolong life expectancy, it is important 

that this progress is accompanied by measures for reducing the carbon footprint of individuals 

and decoupling environmental pressures such as increases in emissions, air pollutants, waste, 

etc from economic growth. Otherwise, sustaining a growing population with the same patterns 

of development and consumption might undermine future wellbeing as recognised in the 

principles of sustainable development and the Sustainable Deveopment Goals. 

 

This study compared two different methodologies ― dynamic and static ― for conducting 

health impact assessment against a common counterfactual scenario where air pollution is 

reduced to its theoretical minimum. Although the dynamic method has been already applied in 

previous studies, to our knowledge the outcomes of the two methods have not been 

comprehensively compared and the static method of projection of health impacts has been the 

norms. While the dynamic model considers changes in mortality and population survival induced 

by changes in exposure, in the static model these dynamics are not reflected. Outputs of the 

two methods in terms of total number of attributable deaths differed both in the direction and 

magnitude of the projected impacts. We argue that the two methods offer different tools for 

assessing two different policy questions. The static method allows assessing total number of 

deaths in a certain period if air pollution only in this but no previous or subsequent periods is 

eliminated (thus not changing population structure over time). The dynamic method, on the 

other hand, allows assessing total premature mortality attributable to PM2.5 compared to a 

counterfactual scenario where air pollution is eliminated in the current and every subsequent 

period. Thus, the static method is appropriate for assessing impacts of policy interventions at 

one point in time, while the dynamic method is more appropriate for assessing feedback effects 

of a policy over time. Summing up avoided deaths from air pollution over time in the static 

method theoretically leads to overestimation of number of deaths as it does not consider that if 

deaths from air pollution were avoided in one period they might still have occurred at a later 

stage due to other unrelated causes, affecting future population size and mortality. However, 

due to the somewhat counterintuitive results when using the dynamic method to assess 

attributable number of deaths ― decrease in total deaths attributable to air pollution in a 

scenario with increasing air pollution ― we argue that a different indicator of health outcomes 

might be more appropriate for comparison of the dynamic and static method, e.g. total person-

years of life lived, healthy life years, etc. 

 

We have strived to arrive at a realistic assessment of the future health implications of cleaner 

air in India by linking in a consistent way modelling frameworks from a diverse set of 

disciplines, ranging from climate, energy systems and atmospheric sciences to demography and 

epidemiology. By using a comprehensive and advanced population projection model we were 

able to reduce one of the major sources of uncertainty related to future health impact 

assessments. The applied methodology allowed us to report the independent impacts of air 

pollution on mortality (direct impacts as well as indirect impacts due to changes in the structure 

of the population) in contrast to the conventional approach, which does not disentangle these 

from the effects of population aging and growth. The dynamic approach used in this paper, 

which accounts for the impacts of changes in air pollution to survival population, allowed us not 

only to more realistically represent exposure-outcome interactions, but also to assess gains in 

life expectancies associated with different emission pathways.  

 



Uncertainty is a major issue when projecting any future impacts of climate change due to the 

inherent complexity and uncertainty of the modeled processes. They key sources of uncertainty 

in our modeling study will likely stem from uncertainties related to (1) current emission 

inventories and future GHG emission trajectories, (2) air pollution modeling, (3) emission 

downscaling, (4) air pollution exposure response function and (5) population projections. The 

propagation of each of these uncertainties in our model produces a cascading effect, resulting 

in considerable uncertainty in the final impact. Due to the large uncertainties inherent in our 

model, the study results should not be considered as predictions or forecasts, but rather as 

plausible future outcomes that are most appropriate for relative comparisons between scenarios 

and for promoting awareness of the range of potential health implications of global and national 

policy decisions. 

 

We also acknowledge some important limitations, which we were not able to address in our 

study. The exposure response function that we use models the association between PM2.5 

exposure and hazard risk from non-communicable (NCD) and lower respiratory infections (LRI). 

Although these account for the majority of deaths in the cohorts included in the GEMM (>99 %) 

and in developed economies, this does not necessarily hold true for LMIC like India, with larger 

share of non-communicable diseases. Furthermore, due to their socio-economic differences, 

sub-national states in India have been shown to have substantial variation in their current state 

of the epidemiological transition (Dandona et al., 2017), which will certainly impact 

susceptibility to air pollution. A multi-decrement population projection, considering the potential 

evolvement of air pollution-related disease burdens over time and within the country would be 

necessary in order to account for this source of uncertainty. However, this was beyond the 

scope of our study due to the lack of reliable data and projections on cause-specific mortality 

for the urban and rural areas of each sub-national state and for all 5-year age groups in India. 

Therefore, we argue that our results could be used as an upper bound of potential health 

impacts associated with air pollution. All things considered, we have used consistent 

demographic assumptions across emission scenarios, which still allows for comparing plausible 

futures. 

 

Another limitation related to the use of the GEMM to estimate health impacts in India is that the 

models is based on cohort studies conducted in mainly in Northern America and Europe, where 

ambient exposures are much lower compared to those commonly observed in low- and middle-

income countries like India. Estimates from high-income countries are not readily transferrable 

to the Indian context also for other reasons such as differences in air pollution source type (a 

number of pollution sources are either only present in developing countries or more widespread 

than in developed ones) and differences in activity (in developed countries people spent most of 

their time in indoor microenvironments, but this does not necessarily hold true for developing 

countries) (Pant, Guttikunda, & Peltier, 2016). Differences in the exposure-response function 

between high- and low- and middle-income countries might also arise because of variations in 

the chemical composition of pollutants and differences in their baseline health status and 

healthcare systems (WHO, 2016).   

 

Furthermore, we note that our results might slightly underestimate impacts at highly polluted 

urban areas due to the logarithmic form of the exposure-response function at concentrations 

above 84 μg/m3 and the fact that we average concentrations across urban grid cells. A more 

precise estimation would have required quantifying the health impacts at grid level, but this 

would have involved additional set of assumptions regarding spatial distribution of future 

population growth. 

 



While the analysed climate change mitigation scenarios assume a transition towards cleaner 

sources of energy, we did not account for the potential reduction in the health burden 

associated with household air pollution (HAP) in the future. HAP is significant in India, with 

43 % of the population in the country still relying on biomass for cooking and heating 

(PHFI&CEH, 2017), but it is expected to decrease in the future with urbanisation, reduction in 

poverty and the uptake of cleaner sources of energy. Therefore, the potential reduction of the 

air pollution burden in the analysed climate change scenarios might be even greater than 

estimated, especially for women and children in rural areas who are disproportionately affected 

by indoor air pollution (HEI, 2019). However, with residential combustion estimated to 

contribute between 20 %- 55% of the total burden of premature mortality from outdoor air 

pollution in the country (Apte & Pant, n.d.), our analysis still accounts largely for the substantial 

benefits from cleaner household energy use.  

 

Although we considered the health co-benefits from climate change mitigation related to 

reduction in anthropogenic emissions, the impacts of changes in weather systems on PM2.5 

concentrations was not considered. On the one hand, air pollutants such as ozone and 

particulate matter can interact with radiation and meteorology (sunlight, wind, clouds) and thus 

induce changes in the climate (Fiore, Naik, & Leibensperger, 2015). On the other hand, climate 

change is expected to aggravate air quality in many polluted regions through various 

mechanisms: by altering atmospheric ventilation and dilution, precipitation and other removal 

processes and by triggering amplified responses in atmospheric chemistry, anthropogenic and 

natural sources (Fiore et al., 2015). Ultimately, the net effects of climate change on air quality 

are likely to vary for different pollutants and from one region to another (IPCC, 2007). An 

ensemble of climate-chemistry models needs to be applied in order to account comprehensively 

and assess the health implications of these additional interactive effects (Silva et al., 2016), 

which was beyond the scope of this study. 

 

We also did not account for the additive and synergistic effects on mortality from the 

simultaneous exposure to high temperature and air pollution. There is an emerging evidence on 

the potential interactive effects between temperature and air pollution (Kinney, 2018). 

Considering that the frequency of simultaneous exposure to high temperature and air pollution 

is projected to increase with climate change all around the globe and especially in India, this 

could be an important area for future research. 

 

5.  Conclusions 
 

This study revealed important synergies between climate change mitigation policies and air 

quality control for avoiding further deterioration in air quality and its associated health impacts 

in India. In particular, global policy commitment in line with the 2° and 1.5° targets of the Paris 

Agreement can substantially decrease air pollution in India and contribute to improvements in 

life expectancy and decrease in premature deaths from exposure to PM2.5. Although our 

estimates quantified only one of the multiple health co-benefits from climate change mitigation, 

these could serve as prominent incentives for climate action.  

 

Results also showed that even larger benefits for human health can be achieved with 

coordination of climate change mitigation and air quality control policies. This is of particular 

relevance, considering that policy responses to air pollution and climate change are often 

formulated independently by different policy departments. While further studies are needed to 

compare the financial viabilities of such measures and identify a portfolio of most cost-effective 



controls, implementation of any policies in this direction is likely to bring substantial gains for 

public health. This study also showed that both climate change mitigation and air quality control 

policies have the potential to contribute to a reduction in large health inequalities between 

states and urban and rural areas in India. 

 

While most previous studies assessing the future health impacts of air quality improvement in 

India have applied a static method, assuming future population structure and mortality rates 

independent from changes in exposure, we used a methodology which allowed us to relaxed 

this assumption and assessed the “feedback” effects of air pollution on population size and life 

expectancy through changes in survival population over time. Thus we have addressed one of 

the main sources of uncertainty in future health impact assessment, lending more credibility to 

the study outcomes. 
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