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Abstract

Most social mobility studies take a two-generation perspective, in which intergenerational re-

lationships are represented by the association between parents’ and offspring’s socioeconomic

status. This approach, albeit widely adopted in the literature, has serious limitations when more

than two generations of families are considered. In particular, it ignores the role of families’

demographic behaviors in moderating mobility outcomes and the joint impact of mobility and

demography in shaping long-run family and population processes. This paper provides a demo-

graphic approach to the study of multigenerational social mobility, incorporating demographic

mechanisms of births, deaths, and mating into statistical models of social mobility. Compared

to previous mobility models for estimating the probability of offspring’s mobility conditional on

parent’s social class, the proposed joint demography-mobility model treats the number of off-

spring in various social classes as the outcome of interest. This new approach shows the extent

to which demographic processes may amplify or dampen the effects of family socioeconomic

positions due to the direction and strength of the interaction between mobility and differentials

in demographic behaviors. I illustrate a variety of demographic methods for studying multi-

generational mobility with empirical examples using the IPUMS linked historical U.S. census

representative samples (1850 to 1930) and the Panel Study of Income Dynamics (1968 to 2015),

and simulation data that show other possible scenarios resulting from demography-mobility

interactions.



1 INTRODUCTION

Studies on social mobility are dominated by a two-generation perspective, in which researchers

analyze the extent to which one’s socioeconomic status, in terms of education, income, occupations,

and the like, is associated with that of one’s parent (Blau and Duncan 1967; Breen 2004; Erikson

and Goldthorpe 1992; Featherman and Hauser 1978; Hout 1983). The most common method of

analysis uses mobility tables, a contingency-table technique that summarizes the probability a child

will be in a certain social position given his parent’s position (e.g., Ginsberg 1929; Glass 1954).

From a statistical view, mobility tables are equivalent to a single transition matrix of a Markov

chain, which describes the transition probability of moving from one social class to another in one

generation step (Bartholomew 1967; Hodge 1966; Prais 1955; Svalastoga 1959; White 1963).

Mobility tables provide an elegant and effective approach to summarizing the transmission of

social status across two generations, but this method’s limitations are widely discussed and debated.

Duncan (1966b: 17), for example, cautioned mobility researchers more than 50 years ago that

What is fundamental is that the process by which occupation structures are transformed—

the succession of cohorts and intracohort net mobility—are not simply translatable into

the processes one may observe in a so-called intergenerational occupation mobility table.

Duncan did not explicitly use the phrase “demography,” but his critique points to the impor-

tance of accounting for demographic processes that govern the transmission of social status from

parents to offspring and the succession of generations in a population. More specifically, as Dun-

can (1966a) noted, the conventional mobility approach relies on a sample of respondents and their

reports on their own parents. The parents are not representative of a previous generation or any

cohort in “some definite prior moment in time” because the sample (1) necessarily omits individu-

als who never had children; (2) overrepresents parents who have many offspring; and (3) includes

parents born into different birth cohorts who vary by childbearing age.

From a demographic perspective, generations within families are linked not only by their so-

cioeconomic statuses, but also by their fertility, mortality, and marriage, among other demographic

behaviors. These demographic outcomes, often stratified by social class, lead to variations among
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families in resources allocation, household formation, and changes in kinship structure, which, in

turn, limit and condition the amount of family capital that can be inherited by subsequent genera-

tions (see examples in Lam 1986; Mare 1997; Mare and Maralani 2006; Maralani 2013; Preston and

Campbell 1993). Compared to the traditional approach based on mobility tables, the demographic

approach provides a more complete account of intergenerational processes, shifting attention from

“how likely that offspring’s status resembles that of their parents” to “how intergenerational effects

come about” (Mare 2015: 101). By doing so, researchers are no longer restricted to analysis of

parents and offspring conditional on the existence of a given offspring, but are now also able to

consider the degree to which offspring will come into existence as an integral part of intergenera-

tional influences (Mare and Maralani 2006). The demographic view of social mobility, albeit long

established in the literature (e.g., Matras 1961, 1967), has been largely overlooked by major studies

on social mobility until recently (Breen and Ermisch 2017; Lawrence and Breen 2016; Maralani

2013; Mare 1997; Mare and Maralani 2006).

The present study generalizes the demographic approach, which has hitherto focused on social

mobility between two generations, to multiple generations. Multigenerational mobility research has

proliferated in recent years, with new studies leveraging the increased availability of longitudinal,

genealogical, and linked administrative data that provide information on family members over three

or more generations (reviewed in Ruggles 2014; Ruggles et al. 2015; Song and Campbell 2017). Yet,

most of these studies follow the tradition of mobility tables, examining the association of social

status across three generations, especially the role of grandparents on grandchildren in status

attainment, net of the widely-studied effects of parents (Chan and Boliver 2013; Ferrie et al. 2016;

Jæger 2012; Mare 2011, 2014; Pfeffer 2014; Song 2016; Zeng and Xie 2014). Despite the considerable

merit of these studies, the complexity of multigenerational influences has not been fully explored.

To pass on their advantages or disadvantages, families must first have at least one offspring in each

generation who can carry the family legacy. In the long run, families’ demographic behaviors may

mute or exacerbate the effect of social mobility, leading to varying numbers and types of offspring

among families. Eventually, some families may grow and account for a disproportionately large

share of the population after several generations or hundreds of years, whereas others may decline

or even become extinct (Song, Campbell, and Lee 2015). This paper illustrates multigenerational
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models that not only account for the circulation of elites in a society due to social immobility, but

also provide aggregate-level inferences about long-term population renewal and change.

Building on previous theoretical constructs and contributions from social mobility and popula-

tion renewal models, I introduce several joint demography-mobility models. The models incorporate

a few new features into conventional discrete-state Markov chain mobility models (Bartholomew

1967; Blumen et al. 1955; Hodge 1966; Matras 1961; Singer and Spilerman 1973) by (1) incor-

porating multigenerational effects; (2) combining demographic processes with the transmission of

social status; (3) addressing population heterogeneity in social mobility; and (4) differentiating

between one-sex and two-sex approaches. These models are extensions to the two-generation social

reproduction model that focuses on female populations in Mare and Maralani (2006).

The rest of the paper proceeds as follows: In section 2, I describe traditional methods based

on discrete-time Markov chains, in which time is measured as “generations” and social status is

measured by a finite number of discrete, qualitatively different categories.1 Section 3 introduces

a joint demography-mobility model, also known as the social reproduction model, which reflects

the evolution of socioeconomic distributions over generations in a population. It also provides

examples of higher-order social reproduction models that include additional parameters for ancestral

influences. Section 4 introduces various definitions of multigenerational effects based on models in

Section 3 and shows how to decompose the effects into demographic and mobility components.

Section 5 shows long-term equilibria of multigenerational social reproduction models compared

to those implied by simple Markov models. Section 6 illustrates a mixture social reproduction

model that allows for heterogeneous mobility regimes among subpopulations. Section 7 describes

a two-sex version of the multigenerational social reproduction model that accounts for interactions

between males and females, namely, the process through which two sexes mate and produce offspring

with others of similar social statuses and jointly influence the social mobility outcomes of their

offspring. Section 8 provides empirical examples of various types of multigenerational mobility and

demographic models using data from the IPUMS linked representative samples of U.S. census data

1I will not discuss continuous-time Markov chain models, which require extensive information about mobility
measured in “real” time (Blumen et al. 1955; Goodman 1961; Singer and Spilerman 1976, 1977; Spilerman 1972b).
Also, this paper does not address models that rely on continuous measures of social status. These models, exemplified
by the path analysis used in Blau and Duncan (1967), often focus on answering questions related to the determinants
of social status rather than the overall extent of social mobility.
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(IPUMS linked, 1850 to 1930), the Panel Study of Income Dynamics (PSID, 1968 to 2015), and

simulation data that show a range of hypothetical demography-mobility interactions. Section 9

concludes the paper by identifying areas for future research on multigenerational methodology.

2 CLASSICAL SOCIAL MOBILITY MODELS BASED ON MARKOV CHAINS

From the outset of studies on social mobility, important theoretical and empirical advances have ac-

companied the development of new methods of data collection, measurement, and analysis (Ganze-

boom et al. 1991). In one of the earliest studies on social mobility, Prais (1955) shows that the

representation of mobility processes as Markov chains has methodological advantages over contin-

gency tables (e.g., Ginsberg 1929; Glass 1954). The Markov chain is a simple form of stochastic

modeling, in which the outcome state of the present generation depends only on that of the parent

generation, not any other preceding generation. The model provides new measures of mobility—

such as equilibrium distribution of social classes and the average time spent in a social class—beyond

measures used in contingency tables, such as vertical and horizontal mobility rates (Sorokin 1959

[1927]), inflow and outflow percentages (Lipset and Bendix 1959), and mobility ratios (Carlsson

1958; Glass 1954; Rogoff 1953; Tyree 1973). These early endeavors, widely considered to be the

first generation of mobility research, all rely on descriptive, global measures to summarize mobility

patterns (Ganzeboom et al. 1991; Boudon 1973).

Below, I provide a brief overview of classic mobility models based on Markov chains. These

models typically start with a mobility table, in which rows refer to fathers’ positions and columns

refer to sons’ positions (with I and J categories, respectively, and typically, I = J) (Bartholomew

1967). Mobility tables can be converted into a Markov chain transition matrix by standardizing

mobility rates between categories as follows:

J∑
j=1

pY2=j|Y1=i =
J∑
j=1

nij
ni+

= 1 (1)

where pY2=j|Y1=i denotes the probability that the son (G2) of a father (G1) in social position i ends

up in position j; nij denotes the number of father-son dyads in positions i and j; and ni+ denotes

the total number of fathers in position i regardless of their sons’ positions.
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Suppose we observe fi fathers in social position i and sj sons in position j. The transition

matrix P that transforms the distribution of fathers into the distribution of sons satisfies

sj =

I∑
i=1

fi · pY2=j|Y1=i (j = 1, 2, ..., J). (2)

In matrix notation, fathers and sons in different positions are denoted by vectors F = [f1, f2, ..., fi, ..., fn]

and S = [s1, s2, ..., si, ..., sn], respectively. The matrix of mobility probabilities P with pj|i in the

ith row and jth column is represented as a square matrix in the following form:

P =



p1|1 p2|1 . . . pn|1

. . .

... pj|i
...

. . .

p1|n p2|n . . . pn|n


n×n

(3)

A transition matrix has all entries as mobility probabilities between 0 and 1. The sum of entries

in each row equals 1. The matrix shows the probability of change in social position from one

generation to the next. Table 1 displays a transition matrix based on occupation groups from

the IPUMS linked representative samples using historical censuses 1850 to 1930. For example,

if a father is in the farming occupation, then the probability that his son will be in the same

occupation is 0.764, and the probability that his son will be in an upper nonmanual occupation is

0.064. We can further divide individuals in each cell of the mobility matrix into subgroups that

vary by their characteristics relevant for mobility and estimate the mobility probability in each cell

using regression techniques (Sørensen 1975; Spilerman 1972a).

The matrix form of the intergenerational transmission of social classes is written as

S1×n = F1×nPn×n. (4)

Assuming mobility rates are fixed over time, we can derive the distribution of men after two

generations as

S(2) =
(
F(0) ·P

)
·P = F(0) ·P2. (5)
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Furthermore, the distribution of descendants, namely the expected proportion of men in various

social positions after t generations, can be projected by taking the matrix to the tth power:

S(t) = S(t−1) ·P = F(0) ·P(t). (6)

This equation shows the process through which the initial progenitor distribution is transformed

into subsequent generations after a number of generations of social mobility. The process retains

no memory, in the sense that a man’s social position entirely depends on that of his father. If

the position of one’s father has been taken into account, then his grandfather, great-grandfather,

and earlier ancestors have no impact on his probability of attaining a specific position. Once a

grandfather fails to transmit his position to his son, he is incapable of influencing the outcomes of

his grandson independently of his son. The memoryless property also makes it possible to predict

how the Markov process behaves in the long run—that is, the eventual distribution of descendants

after a sufficient number of generations. Provided that the transition matrix is regular, as time

progresses, the process will “forget” its initial distribution and converge to a unique equilibrium

distribution of the descendants that is unrelated to the initial distribution (Norris 1998).2 This

property implies that

lim
t→∞

F(0) ·P(t) = π (7)

where π is called the equilibrium vector of the Markov chain. This property suggests that in the

short run, the initial distribution of progenitors influences future generations, but the influence

diminishes as time passes. In the long run, the descendant distribution is only determined by the

transition matrix P. Section 5 further discusses how to obtain the vector π by solving the Markov

chain equilibrium.

According to Coleman (1964a: 462), “the intent of the (Markov) model is not to mirror reality in

all its facets. It is, instead, to see just how much of reality can be mirrored by a highly constrained

process. That is, our question will be: How well does this rather restrictive assumption allow us to

account for the data on intergenerational mobility?” To evaluate the suitability of a Markov chain

2Regular means all entries in some power of the transition matrix are positive. Or more strictly speaking, a
Markov chain is irreducible, positive recurrent, and aperiodic.
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model for representing a multigenerational process, it is important to first identify assumptions

implied in this model. Below, I list five key assumptions that are modified from Pullum (1975:

16–17).

Assumption 1 [No Demography]. Families’ social mobility, PY2|Y1 , is assumed to be in-

dependent of demographic behaviors in any generation, R, such as mortality, fertility, adoption,

mating, and migration, as well as the timing of these events. In particular, families’ social status,

X, does not affect their number of children or long-term reproductive success.

Assumption 2 [Markov Property]. All multigenerational influences on a son are mediated

by the father, PYn|Ȳn−1
= PYn|Yn−1,Yn−2···Y1 = PYn|Yn−1

. The grandfather, great-grandfather, re-

mote ancestors, and wider kin network have no effect on the son when the father’s influence is

accounted for. Thus, the total influences of one’s ancestors are equal to the total influence of the

father.

Assumption 3 [Transition Stationality]. The intergenerational transition matrix does not

change as the history unfolds, that is, P(t) = P. All multigenerational relationships can be derived

from the time-invariant two-generation mobility table.

Assumption 4 [Homogeneous Mobility Regime]. A single mobility regime, P, in the

society is assumed, so that all individuals in a population are subject to the same set of mobility

probabilities given their fathers’ social class, pY2|Y1 . This assumption also implies that the popu-

lation is homogeneous with respect to characteristics other than the measure of social class under

consideration.

Assumption 5 [One-Sex Mobility]. The model includes only fathers and sons; it ignores

women’s social statuses and the potential influence of mothers and maternal ancestors, namely,

PYgn=son|Ygn−1=father
= PYgn={son, daughter}|Ygn−1={father, mother} . The role of mating rules, such as assor-

tative mating by social status in determining the number of marriages and families’ reproductive

behaviors in a population, is not considered.

Mare (2011) provides examples of social contexts in which these assumptions may be violated

and discusses the implications of these violations for understanding multigenerational mechanisms.

In the following sections, I modify each of the five assumptions and show variants of stochastic

models that may better characterize multigenerational processes under different circumstances.
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3 A JOINT DEMOGRAPHY-SOCIAL MOBILITY MODEL

3.1 A Two-Generation Setup

The mobility table in Markov chain models provides a straightforward way of assessing the degree

of social mobility between generations. Yet, as discussed earlier, mobility tables represent fathers’

and sons’ occupational distributions by giving equal weight to sons from families of unequal size,

ignoring the fact that some fathers may have many sons while others have none. The transmission

of social status from fathers to sons is not a simple, one-to-one mapping; instead, demographic

processes, such as births, deaths, and migrations, may all influence the number of offspring observed

in a mobility table (Kahl 1957; Pullum 1970).

So far, we do not have an agreed-upon solution for translating a Markov mobility model into

a model that illustrates changes in social structure and population renewal simultaneously. Con-

ceptually, the Markov model is flawed by the lack of a distinction between generation and birth

cohort. If we define the son generation as a birth cohort whose occupational distribution is observed

at a recent point in time, then fathers’ occupations—represented by the marginal distribution of

the mobility table—do not comprise the occupational distribution of any birth cohort at any prior

point in time (Duncan 1966a). Fathers’ levels and timing of fertility vary, so a generation of fathers

consists of a group of men whose birth years are not well-defined—and often not even asked in

retrospective surveys of sons. Such ambiguity also occurs in the definition of the sons’ birth cohort

when mobility tables are constructed from a prospective perspective (Song and Mare 2015; Ya-

suda 1964). Methodologically, a mobility table is not equivalent to a population projection matrix

that can be used to describe population dynamics. Mobility tables often include no age-specific

information that could be used to predict the progression of birth cohorts. Nor do they include

individuals’ life history events—such as the school-to-work transition, job promotion and changes,

retirement, or even death—that could be used to predict occupational compositions of fathers and

sons in the labor market. Despite all these potential difficulties in combining a mobility model with

demographic components, a few studies propose variants of Markov models that allow for differ-

ential demographic rates (Chu and Koo 1990; Matras 1961, 1967; Mare 1997; Mare and Maralani

2006; Maralani 2013; Preston 1974; Preston and Campbell 1993; Lam 1986, 1997). These models
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provide a good starting point for future work.

To relax Assumption 1, Matras (1961) first proposed a Markov model that incorporates

differential population growth as follows:

sj =
I∑
i=1

fi · ri · pY2=j|Y1=i (j = 1, 2, ..., J). (8)

where fi denotes the number of fathers in social class i; sj denotes the number of sons in class j;

ri denotes the expected number of sons born to a man in class i who survive to adulthood or are

old enough to acquire a social position;3 and pY2=j|Y1=i denotes the probability that a son born to

a father in class i will attain class j.4

Relying on the recursive form of the model, we can model the socioeconomic distribution of

descendants given that intergenerational fertility and mobility processes are fixed over time (namely,

a time-homogeneous Markov chain). Set a diagonal matrix for the differential fertility component,

R = [rij ], where rij = ri for i = j and rij = 0 for i 6= j. P is the same mobility matrix defined in

equation (3). Let R ·P = C, and we obtain the following intergenerational relationship:

S(2) = S(1) ·C = F(0) ·C2. (9)

In general, the generation-to-generation change is represented by

S(t) = F(0) ·Ct. (10)

Subsequent work has extended this basic model in several ways. Matras (1967) introduced a

model that incorporates the age structure of each generation, which was later analyzed empirically

by Lam (1986) and Mare (1997). Preston (1974) developed a model that separates white and non-

white families. Mare and his collaborators further decomposed the differential reproduction rates

into marriage, fertility, and mortality components (Kye and Mare 2012; Maralani 2013; Mare and

Maralani 2006; Maralani and Mare 2005; Mare and Song 2014).

3In population data, the average number of sons who survived to adulthood may not be available. An approximate
measure is the Gross Reproduction Rate, namely, the average number of sons who would be born to a man during
his lifetime if he lives through his child-bearing years and conforms to the age-specific reproduction rates of a given
year.

4Matras (1961) uses the proportion of fathers (sons) in each occupation, but here we use the number of fathers
(sons) to be consistent with equation (8).
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Overall, these models show the effect of a person’s social class in one generation on the expected

number of sons in various social classes in the next generation—that is, they show the joint effects

of a man’s social class on his demographic behaviors and his children’s socioeconomic attainment.

Therefore, these models illustrate the transformation from F to S as a sociodemographic process

rather than strictly a social mobility process. In subsequent sections, I refer to these models as

social reproduction models or sociodemographic mobility models.

As discussed earlier, the model specifications in equation (8) may simplify demographic processes

in social mobility, especially by relying on the concept of generation rather than using a real-time

scale (Duncan 1966a). Projections from the model often do not mirror observed empirical processes

that evolve continuously in time. Yet, taken qualitatively, conclusions from these models may still

reflect general trends in family dynamics in the long run.

3.2 Multigenerational Models

One central assumption of the Markov chain model is that each generation directly influences only

the immediately following generation, exerting no direct effect beyond its offspring (Assumption

2). No matter how much influence parents have on their children’s outcomes, they do not influence

their grandchildren’s outcomes independently of their own children. This means the social system

has no memory: if a family loses its existing advantages, it has to start from scratch. This assump-

tion may be invalid under some social circumstances, such as when multigenerational social pro-

cesses are non-Markovian. In particular, individuals’ social mobility may depend on various forms

of multigenerational influence, such as direct influences from grandparents and great-grandparents,

cumulative advantages (or disadvantages) of prior generations, legacy influences of remote ancestors

who experienced extreme hardship or success, or supplementary influences of nonresident kin in ex-

tended families (Mare 2011). Some of these processes can be represented by second- or higher-order

Markov chains (see, e.g., Goodman (1962) on attitude change and Hodge (1966) on three-generation

mobility), but in general, I will refer to them as non-Markovian generational processes.

The simplest way to relax the Markovian assumption is to incorporate the effect of grandparents
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into Matras’s model shown in equation (8):

sj =
∑
i

∑
k

fik · rik · pY3=j|Y2=i,Y1=k (11)

where sj denotes the number of men in the offspring generation who are in class j (j = 1, ..., J); fik

denotes the number of men in the paternal generation who were in class i and whose fathers were

in class k; rik denotes the expected number of sons born to each man in fik; and pY3=j|Y1=i,Y2=k

denotes the probability that a son with a father in class i and a grandfather in class k will attain

class j.

We can extend Matras’s model by adding more demographic parameters and families’ socioe-

conomic characteristics from prior generations:

sj|ikl,c = fikl,c ·mikl,c · rikl,c · pYn=j|Yn−1=i,Yn−2=k,Yn−3=l,Ȳ=c (12)

where sj|ikl,c denotes the number of men in the offspring generation who are in class j (j = 1, ...J)

and whose fathers were in class i (i = 1, ..., I), grandfathers were in class k (k = 1, ...,K), and

great-grandfathers were in class l (l = 1, ..., L); mikl,c denotes the probability of getting married (or

the average number of marriages) for men in fikl,c in the parent generation; and rikl,c denotes the

expected number of sons born to each marriage of men in the parent generation. The extra subscript

c (c = 1, ..., C) refers to this person’s ancestral traits that do not change over generations (e.g., an

indicator of remote family history of slavery or royalty). More generally, if the model parameters

depend on the socioeconomic status of all prior generations and let Ȳn−1 = {Y1, Y2, · · · , Yn−1}, the

model can be written as

sYn =
∑
Y1

· · ·
∑
Yn−1

fȲn−1
·mȲn−1

· rȲn−1
· pYn|Ȳn−1

(13)

To predict the number of descendants in the nth generation, we rely on the recursive relationship
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shown in equation (10); the resulting model is written as

s
(n)
Yn

=
∑
Y1

· · ·
∑
Yn−1

fY1 ·mY1 · rY1 · pY2|Y1 ·mȲ2
· rȲ2

· pY3|Ȳ2
· · ·mȲn−1

· rȲn−1
· pYn|Ȳn−1

=
∑
Y1

· · ·
∑
Yn−1

fY1 ·
n−1∏
i=1

mȲi
· rȲi

· pYi+1|Ȳi
(14)

The marriage (m), fertility (r), and social mobility (p) terms can be modeled by generalized linear

models as functions of independent variables. Marriage outcomes are often assumed to be dichoto-

mous if the probability of getting married is considered, or non-negative counts if the number of

marriages is considered. The latter applies to populations that have high rates of multi-partner

fertility or polygamy. The marriage term thus can be characterized by a logit or negative binomial

function. Reproduction outcomes are often assumed to follow a Poisson distribution with a possible

overdispersion parameter and modeled by the negative binomial function. The mobility term can

be modeled by multinomial logistic models when we assume multiple categories of social statuses.

This model is restricted to influences of the father, grandfather, and great-grandfather, but similar

recursive models can incorporate influences from more generations or from paternal and maternal

sides of the family. In general, assume the response variable X (either m, r, or p) is generated from

a particular distribution in the exponential family, such as binomial, Poisson, or multinomial dis-

tributions, among others. The mean, µ, of the distribution depends on the independent variables,

Z, which may include socioeconomic status measures of more than one generation within a family:

E(X) = µ = g−1(Zβ), (15)

where E(X) is the expected value of x; zβ is the linear predictor, a linear combination of unknown

parameters β; and g is the link function.

Despite the importance of validating the Markovian assumption in mobility models, only a few

studies have tested the assumption empirically (Hodge 1966; Warren and Hauser 1997; see a review

of these studies in Appendix Table S1). The increasing availability of longitudinal data in recent

years has facilitated a growing body of scholarship that investigates the Markovian assumption

more thoroughly using empirical evidence from the United Kingdom (Chan and Boliver 2013),

the United States (Jæger 2012; Song 2016; Wightman and Danziger 2014), Germany (Hertel and
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Groh-Samberg 2014), the Netherlands (Bol and Kalmijn 2016; Knigge 2016), Sweden (Hällsten

2014), Denmark (Møllegaard and Jæger 2015), Finland (Erola and Moisio 2007), mainland China

(Zeng and Xie 2014), and Taiwan (Chiang and Park 2015). Findings from these studies are far

from conclusive, suggesting the validity of the Markovian assumption may vary across time and

social context. Even within a society, patterns of social mobility may vary by the form of social

status under consideration, be it stocks of social advantages, such as business, land, or estate

ownership, or flows of advantages such as income, occupation, and education. Moreover, any test

of the Markovian assumption may be subject to the “lumpability” problem (Kemeny and Snell

1960: pp.123-139): a non-Markovian chain may become Markovian if we combine or divide some of

the transition states. Therefore, any conclusion regarding the mobility pattern is valid only under

the condition that the states are defined the way they are (McFarland 1970).

3.3 Age-Classified Models

Regular mobility models often ignore the age structure of the parent or the offspring generation.

Such a simplification does not affect our understanding of the long-term behaviors of a Markov

chain—namely, the chances individuals will achieve a certain social class conditional on their par-

ent’s or ancestor’s social status. Yet the distribution of fathers or sons, even after the reproduction

factor described in the previous section is accounted for, only reflects the overall size of each gen-

eration, not the population structure at a given point in time. From a demographic perspective,

all accurate representations of population growth—or “transformations of occupation structure”

(Duncan 1966a)—depend on age-specific fertility and mortality rates. In his classic work on pop-

ulation projection, P. H. Leslie (1945: 183) showed that “the age distribution of the survivors and

descendants of the original population at successive intervals of time” can be derived from simple

matrix multiplication, assuming the regime of mortality and fertility is time-constant or year-to-

year change in mortality and fertility is known. Keyfitz (1964) introduced this method to the

study of human populations. Specifically, let ri,t refer to age-specific fertility rates, often based on

five-year age groups, for social class i and age group t; ri,t is a positive number for men within the

reproductive age range and zero otherwise. In addition, let 5Li,t+5

5Li,t
refer to the life table function of

surviving from age t to t + 5 for social class i. The social reproduction models shown in equation

13



(8) thus can be represented as

sj,1 =

I∑
i=1

T∑
t=1

fi,t · ri,t · pY2=j|Y1=i (j = 1, 2, ..., J) (16)

sj,t+5 = sj,t · 5Lj,t+5

5Lj,t
(17)

fi,t+5 = fi,t · 5Li,t+5

5Li,t
(18)

Note that this model assumes social attainment is completed at births, and no intragenerational

mobility is allowed for either the father or son generation. Predictions based on these assumptions

may detract from the exact number of incumbents in each social class, but this will not affect

conclusions regarding the overall social trend from an intergenerational perspective. The matrix

forms of similar models based on the Leslie matrix are described in Matras (1967) and Mare (1997).

4 SOCIAL MOBILITY EFFECT VS. DEMOGRAPHIC EFFECT

Using the models described above, we can estimate the effect of one generation on the next or several

generations later in terms of (1) the pure mobility effect based on the classic Markov models, and

(2) the joint mobility and demography effect based on the social reproduction model in equation

(8). The effects are defined in ratio measures and difference measures. The ratio measure refers

to arithmetic quotients of mobility or demographic outcomes between two types of families; the

difference measure refers to the difference score between the two. Both measures are widely used

in social sciences (see a recent review and critique by Stolzenberg 2018), but ratio measures are

more popular in the literature of social mobility, especially in mobility models based on log-linear

analysis and odds ratios (Agresti 2013; Powers and Xie 2000). This section illustrates how to

quantify various components of mobility and demography effects using the following definitions

and decomposition methods.

4.1 Net and Total Mobility Effects

In traditional mobility models, researchers typically measure mobility by estimating differences in

the probability of achieving high social status for children who grew up in rich versus poor families.

For example, Chetty et al. (2014) show that for individuals born in 1971, the probability of reaching
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the top fifth income quintile group conditional on a parent (either father or mother) being in the

top quintile is 31.1%, compared to 8.4% for individuals whose parents’ income is in the bottom

quintile. Based on a ratio measure, the total mobility effect (TME) of having a parent in social

class k relative to social class j for children to attain social class k can be defined as

TMEP = pY2=k|Y1=k/pY2=k|Y1=j (19)

where pY2=k|Y1=k (or pY2=k|Y1=j) refers to the probability that children whose parents are in class

k (or j) will end up in class k.

Likewise, the total mobility probability effect of having grandparents in social class k relative

to class j is estimated by combining the mobility from grandparents to parents and from parents

to offspring:

TMEGP =
∑
i

pY3=k|Y2=i,Y1=k · pY2=i|Y1=k

/∑
i

pY3=k|Y2=i,Y1=j · pY2=i|Y1=j (20)

where pY3=k|Y2=i,Y1=k (or pY3=k|Y2=i,Y1=j) refers to the probability that children whose parents are

in class i and grandparents are in class k (or j) will end up in class k; and pY2=i|Y1=k (or pY2=i|Y1=j)

refers to the probability that children whose parents are in class k (or j) will attain class i.5 If we

control for the parent generation, the mobility ratio is defined as the net mobility effect (NME):

NMEGP = pY3=k|Y2=i,Y1=k

/
pY3=k|Y2=i,Y1=j . (21)

The total and net effects of grandparents are often unequal, but they are the same for the effect of

the parent generation defined in equation (19).

4.2 Net and Total Social Reproduction Effects

Based on the social reproduction model discussed above, we define the total and net Social Repro-

duction Effects (SRE) for a targeted social class category relative to a baseline category in each

generation that affects an individual’s own social class. For example, the expected number of in-

dividuals in class category k whose parents were in class k relative to those whose parents were in

5Intergenerational mobility is assumed to be time-invariant, so pY2=i|Y1=k refers to the same probability from the
grandparent to the parent generation in equation (20) and from the parent to the offspring generation in equation
(19).
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class j is6

SREk|j =
sY2=k|Y1=k

sY2=k|Y1=j
=
fk · rk · pY2=k|Y1=k

fj · rj · pY2=k|Y1=j
. (22)

If we consider multiple generations, we can further differentiate between the net and the total

effect of a prior generation on the present generation. The net social reproduction effect (NSRE)

of grandparents is defined as the comparative advantage of a parent in class j and a grandparent

in class k over a parent and a grandparent both in class j in producing grandchildren in class k:

NSREGPk|j =
sY3=k|Y2=j,Y1=k

sY3=k|Y2=j,Y1=j
=
fjk · rjk · pY3=k|Y2=j,Y1=k

fjj · rjj · pY3=k|Y2=j,Y1=j
. (23)

Alternatively, we can define the NSRE of grandparents by fixing parents’ social class at k. The

two NSRE definitions will lead to the same estimates if there are no interaction effects between

grandparents’ class and parents’ class in determining levels of r and p.7

By contrast, the total social reproduction effect is the comparative advantage of a grandparent

in position k over a grandparent in position j in producing grandchildren in position k regardless

of the parent’s position. Specifically,

TSREGPk|j =
s

(2)
Y3=k|Y1=k

s
(2)
Y3=k|Y1=j

=

∑
i fk · rk · pY2=i|Y1=k · rik · pY3=k|Y2=i,Y1=k∑
i fj · rj · pY2=i|Y1=j · rij · pY3=k|Y2=i,Y1=j

(24)

where s
(2)
Y3=k|Y1=j (and s

(2)
Y3=k|Y1=k) refers to the number of grandchildren in position k whose grand-

parents are in position j (and k).

Note that we define the net and total effects of a prior generation based on a ratio measure,

but this tells us nothing about the absolute difference between the number of various types of

descendants from two ancestral groups of different social statuses. Revising equation (11), we can

6Note that in traditional mobility studies, the mobility effect is often defined in terms of odds ratios, that is
pY2=k|Y1=k/pY2=j|Y1=k

pY2=k|Y1=j/pY2=j|Y1=j
. The odds ratio measure, however, cannot reflect the demography effect if we define SRE as

=
fk·rk·pY2=k|Y1=k/fk·rk·pY2=j|Y1=k

fj ·rj ·pY2=k|Y1=j/fj ·rj ·pY2=j|Y1=j
because the reproduction parameter as a common factor is cancelled.

7In other words, the net social reproduction effect of grandparents can also be defined as NSREGP
k|j =

sY3=k|Y2=j,Y1=k

sY3=k|Y2=j,Y1=j
=

fjk·rjk·pY2=j|Y1=k

fjj ·rjj ·pY3=k|Y2=j,Y1=j
. This NSREGP will yield the same estimate as that in equation (23) if

fkk
fkj

=
fjk
fjj

= f·k
f·j

, rkk
rkj

=
rjk
rjj

= r·k
r·j

, and
pY3=k|Y2=k,Y1=k

pY3=k|Y2=k,Y1=j
=

pY3=k|Y2=j,Y1=k

pY3=k|Y2=j,Y1=j
=

pY3=k|Y1=k

pY3=k|Y1=j
.

16



define SRE in the parent generation as a difference measure:

SREk|j = sY2=k|Y1=k − sY2=k|Y1=j = fk · rk · pY2=k|Y1=k − fj · rj · pY2=k|Y1=j . (25)

More generally, the net SRE and total SRE of an ancestor who lives n generations back can be

written as

NSRE
(n)
k|j = fȲn−1,k

· rȲn−1,k
· pYn=k|Ȳn−1,k

− fȲn−1,j
· rȲn−1,j

· pYn=k|Ȳn−1,j
(26)

TSRE
(n)
k|j =

∑
Y2

· · ·
∑
Yn−1

fk ·
n−1∏
i=1

rȲi,k
· pYi+1|Ȳi,k

− fj ·
n−1∏
i=1

rȲi,j
· pYi+1|Ȳi,j

. (27)

The notations are slightly modified from the social reproduction models in equations (13) and (14).

In particular, Ȳi,k refers to {Yi, Yi−1 · · ·Y2, Y1 = k} in which the social status of the first generation

is fixed at Y1 = k. The net effect suggests the comparative advantage of a family with an nth

ancestor in social position k over a family with an nth ancestor in position j in producing sons

in position k. Social positions of intermediate generations are fixed to be the same for these two

families. By contrast, the total effect suggests the cumulative advantage of an ancestor in social

position k relative to an ancestor in position j in producing descendants in position k after n

generations regardless of social positions of intermediate generations. In equations (26) and (27),

the position of the nth generation is fixed at k, namely, pYn=k|Ȳn−1,k
(and pYn=k|Ȳn−1,j

).

4.3 Effect Standardization and Decomposition

Next, we introduce decomposition techniques that separate social reproduction effects into fertil-

ity and mobility components. The decomposition method shows the relative importance of de-

mographic and social pathways in explaining differences between descendants from two ancestral

groups of different social statuses. To begin, we use Kitagawa’s (1955) decomposition method

for the difference between two rates. For example, if the number of fathers is standardized (i.e.,
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fk = fj = 1), the difference between the two terms in SRE in equation (25) can be written as

SREk|j = sY2=k|Y1=k − sY2=k|Y1=j

= (rk − rj) ·
(pY2=k|Y1=k + pY2=k|Y1=j)

2︸ ︷︷ ︸
demography effect

+
(rk + rj)

2
· (pY2=k|Y1=k − pY2=k|Y1=j)︸ ︷︷ ︸

mobility effect

(28)

where the demography effect refers to differences in SRE attributed to differences in reproduction

rates of fathers in positions j and k, fixing the mobility probability of their offspring at the level

of p̄ =
pY2=k|Y1=k+pY2=k|Y1=j

2 ; and the mobility effect refers to differences in SRE due to differences

in mobility probabilities of offspring from fathers in positions j and k, fixing fathers’ reproduction

rates at the level of r̄ =
rk+rj

2 .8

If the demographic effect is assumed to have two components—for example, marriage (m·) and

reproduction within marriage (r·), as shown in equation (13)—the above decomposition method

can be modified as follows:

SREk|j = (mkrk −mjrj) ·
(pY2=k|Y1=k + pY2=k|Y1=j)

2
+

(mkrk +mjrj)

2
· (pY2=k|Y1=k − pY2=k|Y1=j).

(29)

For the term (mkrk −mjrj), we can repeat the Kitagawa decomposition method and obtain

SREk|j =

(
(mk −mj) ·

(rk + rj)

2
+ (rk − rj) ·

(mk +mj)

2

)
·

(pY2=k|Y1=k + pY2=k|Y1=j)

2

+
(mkrk +mjrj)

2
· (pY2=k|Y1=k − pY2=k|Y1=j).

(30)

Let m̄ =
mk+mj

2 , m̄ =
mk+mj

2 , mr =
mkrk+mjrj

2 , and p̄ =
pY2=k|Y1=k+pY2=k|Y1=j

2 , and the above

equation can be further simplified as

SREk|j = (mk −mj) · r̄ · p̄︸ ︷︷ ︸
marriage effect

+ (rk − rj) · m̄ · p̄︸ ︷︷ ︸
reproduction effect

+mr · (pY2=k|Y1=k − pY2=k|Y1=j)︸ ︷︷ ︸
mobility effect

. (31)

There are many ways to decompose a difference measure, especially when the demographic rate

contains multiple factors. For example, the above SRE with marriage, reproduction, and mobility

8Following the definitions in equation (23), the difference measure of the net social reproduction effect of grandpar-

ents can be decomposed into NSREGP
k|j = (rkk−rkj) ·

(pY3=k|Y2=k,Y1=k+pY3=k|Y2=k,Y1=j)

2
+

(rkk+rkj)

2
·(pY3=k|Y2=k,Y1=k−

pY3=k|Y2=k,Y1=j).

18



components can also be decomposed using the method proposed by Das Gupta (1993):

marriage effect =

[
rk · pY2=k|Y1=k + rj · pY2=k|Y1=j

3
+
rk · pY2=k|Y1=j + rj · pY2=k|Y1=k

6

]
· (mk −mj)

(32)

reproduction effect =

[
mk · pY2=k|Y1=k +mj · pY2=k|Y1=j

3
+
mk · pY2=k|Y1=j +mj · pY2=k|Y1=k

6

]
· (rk − rj)

(33)

mobility effect =

[
mk · rk +mj · rj

3
+
mk · rj +mj · rk

6

]
· (pY2=k|Y1=k − pY2=k|Y1=j) (34)

Next, we extend equation (28) and consider the standardized difference measure of the total

effect of grandparents. For the sake of simplicity, we omit the marriage effect. A simple decompo-

sition method that divides the effect into total demographic effects and total mobility effects would

be

TSREGPk|j =
∑
i

rk · pY2=i|Y1=k · rik · pY3=k|Y2=i,Y1=k −
∑
i

rj · pY2=i|Y1=j · rij · pY3=k|Y2=i,Y1=j (35)

=
∑
i

(rk · rik − rj · rij) ·
(pY2=i|Y1=k · pY3=k|Y2=i,Y1=k + pY2=i|Y1=j · pY3=k|Y2=i,Y1=j)

2︸ ︷︷ ︸
demography effect

+
∑
i

(rk · rik + rj · rij)
2

· (pY2=i|Y1=k · pY3=k|Y2=i,Y1=k − pY2=i|Y1=j · pY3=k|Y2=i,Y1=j)︸ ︷︷ ︸
mobility effect

(36)

Applying Das Gupta’s decomposition method (1993) for rates of four factors, we can further decom-

pose compound demography and mobility effects into effects from different generations. To simplify

the notations, below we use r1 = rk, r
′
1 = rj , r2 = rik, r

′
2 = rij p1 = pY2=i|Y1=k, p

′
1 = pY2=i|Y1=j ,

p2 = pY3=k|Y2=i,Y1=k, p
′
2 = pY3=k|Y2=i,Y1=j .

demography effect (1) =
∑
Y2

[
p1r2p2 + p′1r

′
2p
′
2

4
+
p1r2p

′
2 + p1r

′
2p2 + p′1r2p2 + p′1r

′
2p2 + p′1r2p

′
2 + p1r

′
2p
′
2

12

]
· (r1 − r′1) (37)
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mobility effect (1) =
∑
Y2

[
r1r2p2 + r′1r

′
2p
′
2

4
+
r1r2p

′
2 + r1r

′
2p2 + r′1r2p2 + r′1r

′
2p2 + r′1r2p

′
2 + r1r

′
2p
′
2

12

]
· (p1 − p′1) (38)

demography effect (2) =
∑
Y2

[
p1r1p2 + p′1r

′
1p
′
2

4
+
p1r1p

′
2 + p1r

′
1p2 + p′1r1p2 + p′1r

′
1p2 + p′1r1p

′
2 + p1r

′
1p
′
2

12

]
· (r2 − r′2) (39)

mobility effect (2) =
∑
Y2

[
p1r1r2 + p′1r

′
1r
′
2

4
+
p1r1r

′
2 + p1r

′
1r2 + p′1r1r2 + p′1r

′
1r2 + p′1r1r

′
2 + p1r

′
1r
′
2

12

]
· (p2 − p′2) (40)

Similarly, to derive the demography and mobility effects from the total effect of great-grandparents,

we can apply Das Gupta’s method for rates of six factors. For example, the demography effect

from the first generation r1 versus r′1 is:

demography effect (1) =
∑
Y2

∑
Y3

[
p1r2p2r3p3 + p′1r

′
2p
′
2r
′
3p
′
3

6

+

p1r2p2r3p
′
3 + p1r2p2r

′
3p3 + p1r2p

′
2r3p3 + p1r

′
2p2r3p3 + p′1r2p2r3p3

+ p′1r
′
2p
′
2r
′
3p3 + p′1r

′
2p
′
2r3p

′
3 + p′1r

′
2p2r

′
3p
′
3 + p′1r2p

′
2r
′
3p
′
3 + p1r

′
2p
′
2r
′
3p
′
3

30

+

p1r2p2r
′
3p
′
3 + p1r2p

′
2r3p

′
3 + p1r2p

′
2r
′
3p3 + p1r

′
2p2r3p

′
3 + p1r

′
2p2r

′
3p3

+p1r
′
2p
′
2r3p3 + p′1r2p2r3p

′
3 + p′1r2p2r

′
3p3 + p′1r2p

′
2r3p3 + p′1r

′
2p2r3p3

+p′1r
′
2p
′
2r3p3 + p′1r

′
2p2r

′
3p3 + p′1r

′
2p2r3p

′
3 + p′1r2p

′
2r
′
3p3 + p′1r2p

′
2r3p

′
3

+ p′1r2p2r
′
3p
′
3 + p1r

′
2p
′
2r
′
3p3 + p1r

′
2p
′
2r3p

′
3 + p1r

′
2p2r

′
3p
′
3 + p1r2p

′
2r
′
3p
′
3

60

]
· (r1 − r′1) (41)

Demography effects (2)–(3) and mobility effects (1)–(3) can be derived easily by interchanging the

terms in equation (41). The total effect of great-grandparents is equal to the sum of all these

separate effects.

In general, the total effect of an N th ancestor defined in equation (27) can be decomposed

into 2N terms including demographic effects and mobility effects from each of the N prior gener-

ations. Below we apply the decomposition method of rates as the product of P factors proposed
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by Das Gupta (1993). We first simplify the notations for demographic and mobility parameters in

each generation. The demographic parameter in the nth generation (n = 1 · · ·N) is written as

rn = rYn|Ȳn−1,k
and r′n = rYn|Ȳn−1,j

. (42)

We use r and r′ to differentiate between two ancestors in the founding generation with social status

k and j, respectively. Similarly, the mobility parameters in the nth generation are

pn = pYn+1|Ȳn,k
and p′n = pYn+1|Ȳn,j

. (43)

Suppose the elements of r and p are members of set A = {r1, · · · , rN , p1, · · · , pN} and r′ and p′ are

members of set A′. The set A excluding one element An (e.g., rn) is defined as A\An (or A\rn). The

TSRE
(n)
k|j =

∑
Y2
· · ·
∑

Yn−1
r1 · · · rN−1 ·p1 · · · pN−1− r′1 · · · r′N−1 ·p′1 · · · p′N−1 can be decomposed into

the sum of demography effect (n) and mobility effect (n) from the nth generation. For example, Das

Gupta (1993: 15–16) describes the decomposition for the part r1 · · · rN−1 ·p1 · · · pN−1− r′1 · · · r′N−1 ·

p′1 · · · p′N−1 as

demography effect (n) =
N∑
t=1

sum of all (2N − 1) terms with (2N − t) from set A\rn and (t− 1)
from set A′\r′n or (2N − t) terms from A′\r′n and (t− 1) from A\rn

2N ·
(

2N−1
t−1

)
· (rn − r′n) (44)

More formally, we introduce the following notations to define the demography effect in equation

(44). We denote B2N−t as subsets of A\An with a cardinality of 2N − t (i.e., |B| = 2N − t). Given

that there are
(

2N−1
2N−t

)
of such subsets, each subset i is denoted by

B2N−t,i = {B2N−t,i : B2N−t,i ∈ A\An}.

The complement of set B2N−t,i can be written as B̄2N−t,i, which satisfies that B̄2N−t,i = Bt−1,i with

the cardinality of t − 1. Taking our illustration of the total effect of grandparents with N = 2 as

an example, the set B21 = {r2, p2} is one subset with cardinality 2 of the set A\r1 = {r2, p1, p2}.

Other subsets include B22 = {r2, p1} and B23 = {p1, p2}, where the total number of subsets with

cardinality 2 is
(

3
2

)
= 3. The complement set of B21 in the counterpart set of A′ is B̄′21 = B′11 = {p′1}.
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demography effect (n) =

N∑
t=1

(2N−1
2N−t)∑
i=1

 ∏
B∈B2N−t

B2N−t,i ·
∏

B′∈B′t−1

B′t−1,i +
∏

B′∈B′2N−t

B′2N−t,i ·
∏

B∈Bt−1

Bt−1,i


2N ·

(
2N−1
t−1

)
· (rn − r′n) (45)

Likewise, if we define set B as a subset of A\pn, the mobility effect can be written as

mobility effect (n) =

N∑
t=1

(2N−1
2N−t)∑
i=1

 ∏
B∈B2N−t

B2N−t,i ·
∏

B′∈B′t−1

B′t−1,i +
∏

B′∈B′2N−t

B′2N−t,i ·
∏

B∈Bt−1

Bt−1,i


2N ·

(
2N−1
t−1

)
· (pn − p′n) (46)

5 SHORT-TERM EFFECT, LONG-TERM EFFECT, AND EQUILIBRIUM

EFFECT

Based on the recursive form of the multigenerational model in equation (8), we can quantify the

relative importance of mobility and demography in shaping short-term and long-term family in-

equality dynamics. We can also simulate the equilibrium properties of the model regarding the

eventual population composition of individuals descended from different families. A critical prop-

erty of the Markov model is that if the transition matrix is time-invariant, the distribution of social

classes after t generations, that is, S(t) = F(0)P(t), will gradually converge to a stationary distribu-

tion that is only determined by the transition matrix, not by the initial distribution of F(0).9 This

property suggests a family’s initial social class may influence the social mobility probability for

several generations, but eventually its influence will fade away. As such, after enough generations,

the social class of a descendant will eventually become independent of the social class of the lineage

founder. The social class distribution between descendants from high-status and low-status origin

lineage founders will become identical. Therefore, social advantages associated with any generation

will not permanently change the social prospects of future generations. Any short-term effect of

9This conclusion relies on the assumption that pij > 0, so that the Markov chain is aperiodic and has a single
recurrent class. This condition ensures that the Markov chain of the mobility process can always converge to a stable
distribution (“equilibrium”), which is independent of the initial distribution.
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one generation does not translate into long-term inequality between families that originate from

unequal social statuses. This property is illustrated by equations (47) and (48).

First, let us define the long-term mobility effect as the ratio of descendants in class k from a

lineage founder in class k relative to class j:

LSRE = lim
t→∞

S
(t)
k|k

S
(t)
k|j

 . (47)

Using the property defined in equation (10), we obtain,

LSER = lim
t→∞

(
F

(0)
k ·P

(t)

F
(0)
j ·P(t)

)
=
π

π
= 1. (48)

The LSRE will also converge to 1 in the long run if social mobility follows a second- or higher-

order Markov process with a time-invariant transition matrix. Such a conclusion, however, may not

hold when we examine the social reproduction effect rather than the mobility effect alone. Assume

S(t) = F(0) ·C(t), where C = R · P, a combination of the reproduction and mobility components.

Suppose the number of social classes is the same for fathers and sons, and the marriage, fertility, and

mobility matrices have no structural 0s. That is, men in different social classes may get married

and have sons, and all sons may stay in the same social class as their fathers or move to other

classes. According to the Perron-Frobenius theorem, C would be a square matrix with positive

entries and a unique dominant eigenvalue. The long-term behavior of S(t) would depend on the

largest eigenvalue of C.

To see this, we assume C has n linearly independent left eigenvectors v1,v2 . . .vn with corre-

sponding eigenvalues of λ1, λ2, . . . λn . Assume the eigenvalues are ordered so that |λ1| > · · · ≥

|λn−1| ≥ |λn|. For the social class distribution in the first generation S(1), we can write this vector

as the linear combination of the eigenvectors of C:

S(1) = a1v1 + a2v2 + · · ·+ anvn (49)

where a1 · · · an are scalars and a1 6= 0. Then, multiplying both sides by C produces

S(1) ·C = (a1v1 + a2v2 + · · ·+ anvn) ·C (50)
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Using the spectral decomposition theorem,

S(1) ·C = a1(λ1v1) + a2(λ2v2) + · · ·+ an(λnvn). (51)

Repeating the multiplication on both sides produces

S(1) ·C(t−1) = a1(λt−1
1 v1) + a2(λt−1

2 v2) + · · ·+ an(λt−1
n vt) = S(t). (52)

As λ1 is assumed to be larger in absolute value than the other eigenvalues, it follows that each of the

fractions λ2
λ1
, λ3λ1 . . .

λn
λ1

is less than 1 in absolute value. Each of the factors
(
λ2
λ1

)t−1
,
(
λ3
λ1

)t−1
. . .
(
λn
λ1

)t−1

must converge to 0 as t− 1 approaches infinity. Therefore, we have the relationship

S(t) ' a1

(
λt−1

1 v1

)
. (53)

For the initial vector F(0) = [f1, f2, · · · , fn], let F
(0)
k = [0, · · · fk = 1, · · · 0] and F

(0)
j = [0, · · · fj =

1, · · · 0]. In other words, the entire initial cohort was located in a single class. Assume a1 = a1k,

when S(1) = F
(0)
k C, and a1 = a1j , when S(1) = F

(0)
j C. After t generations, the long-term social

reproduction effect would converge to

LSRE = lim
t→∞

(
a1kλ

t−1
1 v1

a1jλ
t−1
1 v1

)
=
a1k

a1j
. (54)

After enough generations, families starting with social class k would eventually produce a1k
a1j

times

as many descendants in class k as families starting with social class j do. In other words, the

asymptotic distribution of descendants is path-dependent: not all families produce the same number

of descendants in the long run. By contrast, regular Markov mobility models with no demographic

effects are ergodic. The transition matrix P can be viewed as a special case of matrix C, where

matrix C is subject to the constraint that the sum of each row is 1. This constraint also guarantees

that λ1 = 1 and a1k = a1j . As a result, the equilibrium distribution of the Markov mobility model

will not depend on social class of the initial generation.
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6 HETEROGENEOUS MOBILITY REGIMES

The regular Markov mobility model assumes all individuals in a population have identical transition

probabilities conditional on their parents’ social status (Assumption 4). This assumption over-

looks many possible sources of heterogeneity associated with individual-level social attributes and

macro-level social structures (Blau 1977). Below, I group sources of population heterogeneity dis-

cussed in previous mobility research into three types: (1) individual, time-invariant heterogeneity,

(2) individual, time-dependent heterogeneity, and (3) heterogeneity in mobility regimes.

The idea of mobility heterogeneity with time-invariant properties can be traced back to Blumen

et al.’s (1955) pioneering study on intragenerational labor mobility. A similar conception can

be applied to the analysis of intergenerational mobility of family lines. Blumen et al. (1955)

identify two types of individuals in a population: movers, who change jobs over time according

to a time-constant Markov transition matrix, and stayers, who remain in the same job category

with probability 1 (namely, a diagonal matrix for the transition matrix). The model includes the

proportions of movers and stayers and the transition probability matrix for movers. A person’s

attribute—as either a mover or a stayer—does not change during the entire period of study. The

model is formulated as follows:

S = F · (Λ + (I−Λ) ·P) (55)

where S and F are social class distributions of sons and fathers, respectively; Λ is a diagonal matrix

with the proportions of stayers in each social class on the diagonals; the diagonal matrix I−Λ

includes the proportions of movers as diagonal entries; and the matrix P refers to the transition

mobility matrix for the movers. The mover-stayer model considers only one of many possible

types of time-invariant heterogeneity by assuming only two distinct subpopulations. In general,

individuals may conform to miscellaneous transition probabilities, or in a more extreme scenario,

each person follows a mobility process governed by a unique set of mobility probabilities (Xie

2013).10

To model individual heterogeneity, Spilerman (1972a) proposes a Markov model that estimates

10Previous research on continuous Markov chain models also discusses heterogeneity in mobility rates versus het-
erogeneity in transition matrices (Bartholomew 1967; Spilerman 1972b).
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individual transition probability with regression models. We first convert the father-son transition

matrix into a person-transition dataset (a long format), where each possible transition is represented

as its own observation.11 For each father in social class i and son in social class j, define an indicator

variable Zij = {zY1=i,Y2=1, zY1=i,Y2=2, · · · , zY1=i,Y2=J}

Zij =


1 if Y2 = j | Y1 = i

0 if Y2 6= j | Y1 = i

(56)

In other words, the indicator variable is 1 if a person born into class i moves to class j. The variable

is 0 for other counterfactual scenarios. We then fit I×J (often I = J) linear probability equations,

and in each equation, Zij is predicted by a set of social attributes X.

For individual c from social class i with attributes (X1c, X2c, · · · , XV c), his probability of moving

into class j is

Pr(Zijc | Xc) = aij +
V∑
v=1

bijvXvc (57)

where âij and b̂ijv are regression coefficient estimates. We can also use other regression models,

such as logistic or probit functions, to estimate the transition probability. If we estimate a separate

transition matrix Pc(Xc) for each person c using the predicted probabilities based on attributes Xc,

intergenerational mobility from fathers to sons can be represented in the following matrix form:

S = F ·

(
C−1 ·

C∑
c=1

Pc(Xc)

)
(58)

where P(Xvc) is known as the individual transition matrix (McFarland 1970; Spilerman 1972a).

The overall transition matrix is estimated from the sum of all individual transition matrices divided

by the population size C.12

The second type of heterogeneity assumes the mobility matrix operates as a function of time.

Studies on intragenerational mobility have proposed the “Retention Model” (Henry 1971) and the

11Assume we have N father-son dyads in the data. To generate the indicator variable, we create J observations for
each son and the sample size becomes N × J .

12If we are only interested in the intergenerational mobility of a certain social group (e.g., non-white, Nc), the

intergenerational mobility can be represented as: S = F ·
(
N−1

C ·
∑NC

c=1 Pc(Xc)
)

.
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“Cornell Mobility Model” (McGinnis 1968), in which movers’ transition probability is assumed to

change over time. Below, we apply these models to the analysis of intergenerational mobility. We

define stayers as individuals who remain in the same occupation as their parents and movers as

those who enter an occupation different from that of their parents. These models show examples

when the stationarity assumption (Assumption 3) fails.

The Retention Model modifies the mover-stayer model in equation (55) by allowing the propor-

tion of movers and stayers to be time-dependent, so the mover-stayer model becomes

S = F · (Λt + (I−Λt) ·P) (59)

where Λt is a diagonal matrix with the diagonal cells indicating the proportion of stayers in each

social class as a function of time; and P refers to the transition matrix of the movers.

The Cornell Mobility model postulates that individuals’ tendency to leave a social class declines

as a strictly monotonic function of the duration of staying in that class. From an intergenera-

tional perspective, this “cumulative inertia” property implies that the longer a family has been

in its current social class, the higher its probability of remaining there for yet another genera-

tion. Following the notation in McGinnis (1968), let dPY2=j|Yi(t) refer to the transition probability

from class i to class j at generation t when a family has remained in class i for d consecutive

generations prior to generation t. The distribution of social classes in the father’s generation is

F = [1f1, 1f2, · · · , 1fI , 2f1, 2f2, · · · , df1, · · · , dfI ]. The duration-specific transition matrix can be

partitioned into the transition matrices of movers and stayers, both of which are also duration

specific:

dPY2=j|Y1=i(t) = dP
mover
Y2=j|Y1=i(t) + dP

stayer
Y2=j|Y1=i(t) (60)

The stayers’ transition matrix dP
stayer
Y2=j|Y1=i(t) is the diagonalization of dPY2=j|Y1=i(t), which satisfies

that

dP
stayer
Y2=j|Y1=i(t) =


dPY2=j|Y1=i(t) if j = i

0 otherwise

(61)
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The relationship between the movers’ and stayers’ transition matrices satisfies that

dP
mover
Y2=j|Y1=i(t) = (I− dP

stayer
Y2=j|Y1=i(t)) ·R (62)

where R = [rij ] subject to rii = 0 is shown to always exist and does not vary by d. Because of the

cumulative inertia property, the model also requires that d+1P
stayer
Y2=j|Y1=i > dP

stayer
Y2=j|Y1=i.

13

Note that this model shows a violation of the stationarity assumption in the regular Markov

model by introducing a time component into the transition probability. Also, it violates the Marko-

vian assumption by linking individuals’ mobility outcomes to the entire history of moves in previous

generations.

The third type of heterogeneity concerns the mixture of mobility regimes in a society or in

a broader stratification system created by spatial, cultural, or institutional forces of segregation.

Using occupational mobility as an example, a plethora of studies show variation in intergenerational

mobility among industrial societies in the mid to late 20th century (DiPrete 2002; Lipset and Bendix

1959; Featherman et al. 1975; Grusky and Hauser 1984; Erikson and Goldthorpe 1992; Xie 1992;

Yamaguchi 1987). Even within a society, several mobility regimes may coexist. One instructive

example provided by Mare (2011) postulates a stratification system consisting of three strata: the

top class, the middle and working class, and the bottom class. The persistence of social status is

stronger at the top and bottom of the social hierarchy than in the middle, due to social policies

and family norms that create a cumulative advantage or disadvantage for families. In cross-country

comparisons, social boundaries among mobility regimes are often assumed to be impermeable, in

contrast to within-society comparisons in which families that start in one mobility regime may

circulate in and out of other regimes after generations of movement. These mobility processes can

be represented in the following matrix form:

S1×n = F1×n ·

(
C∑
c=1

λ(c) ·Pn×n(c)

)
(63)

where λ(c) denotes the weight of each subgroup c, λ(c) > 0,
∑

c λ(c) = 1 and pij(c) denotes the

mobility probability of sons achieving social status j given their fathers are in class i for subgroup c

13One example illustrated by McGinnis (1968) is dP
stayer = I −

(
1 − 1

a

)d−1 (
I− 1P

stayer
)
, a > 1 and dP

mover =(
1 − 1

a

)d−1
(I− dP

stayer) ·R.
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(c = 1, 2, ..., C). For example, Mare and Song (2014) analyzed social mobility of descendants from

imperial and peasant families using Chinese family genealogies and historical linked censuses (c =

1 descendants of emperors; c = 2 descendants of peasants). If subgroups are distinct and time-

invariant, then pij(c) will be fixed over generations. If social boundaries are permeable, families’

membership c may change over time, leading to time-varying weights λ(c, t) and mobility matrix

P(c, t).

Compared to regular mobility models, mixture Markov models that account for population

heterogeneity often provide better representations of observed mobility processes, in terms of model

goodness-of-fit such as the χ2 test (Goodman 1962). However, as McFarland (1970: 475) notes

regarding these heterogeneous mobility models, “any real adequate model would be too cumbersome

to be fitted to numerical data.” Mobility researchers will always have to design a trade-off between

model accuracy and simplicity.

7 A TWO-SEX APPROACH

Traditional social mobility studies typically take a one-sex approach by focusing exclusively on the

intergenerational association of social status between fathers and sons, while ignoring the indepen-

dent role of mothers or the joint role of parents (Assumption 5). The one-sex approach is also

widely adopted in demographic models, which assume population dynamics are determined by the

vital rates of one sex only, often women, or that the roles of both sexes are identical (Caswell 2001).

In multigenerational analyses, the one-sex approach is useful when transmission of social character-

istics is sex-linked. For example, in many patriarchal societies, social positions were passed down

the male lineage from paternal grandfathers to fathers to sons. When comparing descendants who

carry sex-linked characteristics from families of unequal origins, we only need to count male de-

scendants in the population. In most western societies, however, this theoretical assumption may

be invalid in practice (Song and Mare 2017).

First, mothers, grandmothers, and maternal grandparents may influence individuals’ socioe-

conomic outcomes, in addition to the influences of patrilineal kin. Beller (2009) shows that the

occupational association between mothers and offspring is approximately equal to that of fathers
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and offspring, partly due to the recent rise in female labor force participation, the reversed gen-

der gap in higher education, and increasing gender economic equality. Also, maternal families,

especially maternal grandmothers may be particularly important for some subpopulations, such as

single-parent or skipped-generation households, where grandparents help raise their grandchildren.

Second, mobility probabilities and demographic rates may differ by gender for sociological and

biogenetic reasons. Men and women often face unequal opportunity structures because of their

distinct occupational preferences, human capital differences that develop through education and

work experiences, and career trajectories (Reskin 1993; Jacobs 1989). Compared to their female

counterparts, men often have higher mortality rates in childhood and adulthood (Preston et al.

2001), lower marriage rates, and greater variation in fertility rates.14 Additionally, socioeconomic

gradients in demographic rates also vary by gender. For example, Nettle and Pollet (2008) show

that income is positively associated with fertility for men but negatively for women. If we apply

the one-sex social and demographic mobility model in equation (13) for men and women separately,

the results may disagree.

Third, the one-sex approach does not take into account interactions between men and women

through the formation of marriages, a mechanism that determines the social makeup of families and

creates the family background of the next generation (Mare and Schwartz 2006). The formation of

marriages depends on the abundance and preferences of mates in a population. On the one hand,

the number and types of marriages are constrained by the “marriage squeeze,” or the imbalance

between the number of men and women considered marriageable (Akers 1967; Schoen 1983). The

marriage squeeze may produce significant changes in the timing and patterns of marriage and

fertility levels in a population. On the other hand, men and women tend to marry others with similar

socioeconomic characteristics. The degree of assortative mating influences not only socioeconomic

resemblance between couples, but also the amount of social advantage or disadvantage transmitted

to the offspring generation. Compared to the one-sex approach, the two-sex approach provides a

refined picture of how intermarriages among social classes, in combination with differential fertility

and mortality, shape social inequality among families.

Previous demographic studies have proposed a variety of two-sex models that account for the

14http://www.pewsocialtrends.org/2014/09/24/record-share-of-americans-have-never-married/
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interdependence of demographic behaviors of both sexes in determining the number of marriages

and births in a population. These models have been used to predict the size, composition, and

growth of future populations (Caswell 2001; Caswell and Weeks 1986; Goodman 1953, 1968; Je-

nouvrier et al. 2010; Kendall 1949; Miller and Inouye 2011; Pollak 1986; Pollard 1973). Below, I

illustrate how to adapt these demographic models for multigenerational mobility research, using

the Birth Matrix-Mating Rule (BMMR) model developed by Pollak (1986, 1987, 1990a,b) as an

example. In parallel to the one-sex model in equation (8), the two-sex model for men and women

is specified as

sk =
∑
i

∑
j

µij(N
m,Nf ) · rmij · pmY2=k|Y1={i,j} (64)

dk =
∑
i

∑
j

µij(N
m,Nf ) · rfij · p

f
Y2=k|Y1={i,j} (65)

where sk (dk) denotes the number of sons (daughters) in the offspring generation who are in social

class k; µij(N
m,Nf ) denotes the number of marriages between fathers in class i and mothers in class

j;15 and rmij (rfij) denotes the mean number of surviving sons (or daughters) born from each union of

class i fathers and class j mothers with completed reproduction history. In general, the differences

between rmij and rfij are determined by male-to-female sex ratios at birth in a population and

differential survival rates of boys and girls to adulthood. In most populations, the two estimates can

be considered equal. Finally, pmY2=k|Y1={i,j} and pfY2=k|Y1={i,j} refer to the probability of obtaining

class k for sons and daughters born to class i fathers and class j mothers, respectively.

To model the mating rule term, µij(N
m,Nf ), I adopt Schoen’s harmonic mean mating rule

(Schoen 1981, 1988), which assumes the number of marriages between two social groups depends

on the relative number of single women and men in these groups and the attractiveness of these

group members to each other. The harmonic mean mating rule specifies that

µij(N
m,Nf ) =

αijN
m
i Nf

j

Nm
i + Nf

j

, αij > 0,
∑
j

αij ≤ 1,
∑
i

αij ≤ 1 (66)

15Following the tradition in the demographic literature, the number of marriages between fathers in class i and
mothers in class j is denoted as µij(N

m,Nf ) rather than µ(Nm
i ,N

f
i ), because the number of marriages between men

in class i and women in class j may depend on the number of men and women in social classes other than i and j,
namely, competition among different classes.
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where αij is the “force of attraction” between males in class i and females in class j, which results

from constraints imposed by the abundance of mates as well as preferences among all class groups

(Schoen 1988). In empirical studies, αij is often estimated from the number of marriages and single

individuals in different social classes (Qian 1998; Qian and Preston 1993; Raymo and Iwasawa

2005). Nm
i is the total number of eligible men in class i, and Nf

j is the total number of eligible

women in class j. One limitation of this function is that it assumes no competition among different

classes (“zero spillover mating rule”) (Pollak 1990a). Miller and Inouye (2011) provide a list of

candidate two-sex mating rules and evaluate their pros and cons using empirical data.

Using the two-generation model in equations (64) and (65), we can derive the socioeconomic

distribution of the grandchild generation. Specifically, the number of granddaughters (grandsons)

in class k, denoted as d
(2)
k (s

(2)
k ), can be estimated as:

s
(2)
k =

∑
i′

∑
j′

µi′j′(S,D) · rmi′j′ · pmk|i′j′ (67)

d
(2)
k =

∑
i′

∑
j′

µi′j′(S,D) · rfi′j′ · p
f
k|i′j′ (68)

where the number of parents µi′j′(S,D) are generated by men in class i′ in the father generation,

si′ , and women in class j′ in the mother generation, dj′ . These men and women in the parent

generation can be estimated by men and women in the grandparent generation recursively.16 The

formulas above show a nonlinear, compound relationship between the distributions of grandparents

and grandchildren. Given that there is no simple analytical form of the distribution of descendants

after n generations, I simulate the two-sex long-term social reproduction effect (LSRE) in the next

section and compare it with its one-sex counterpart discussed in Section 3.

In most societies, individuals tend to choose spouses with similar socioeconomic characteristics

more frequently than would be expected under random mating (Schwartz 2013). Two other mating

patterns, random mating and endogamous mating, which assume individuals either select mates

irrespective of social background or marry only within their own social classes respectively, are less

common in practice but have important theoretical implications. Formally, the random mating rule

16That is, si′ =
∑

i

∑
j µij(N

m,Nf ) · rmij · pmi′|ij and dj′ =
∑

i

∑
j µij(N

m,Nf ) · rfij · p
f
j′|ij . The parameters Nm and

Nf refer to the number of men and women in the grandparent generation, respectively.
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specifies that

µij(N
m,Nf ) =

Nm
i Nf

j

(Nm + Nf )/2
(69)

where Nm =
∑

i N
m
i and Nf =

∑
j Nf

j . Compared to the assortative mating rule in equation (66),

random mating assumes the number of marriages between men in class i and women in class j

is only constrained by the abundance of mates.17 For endogamous mating, we assume marriages

only happen between men and women within the same social class and thus are constrained by the

gender group with fewer members:

µij(N
m,Nf ) =


min(Nm

i ,N
f
j ), if i = j

0, if i 6= j

To evaluate the role of assortative mating in multigenerational processes, in the next section I

compare long-term multigenerational social reproduction effects estimated from various two-sex

mating and mobility scenarios.

8 ILLUSTRATIVE EXAMPLES: MULTIGENERATIONAL SOCIAL MOBIL-

ITY AND REPRODUCTION IN THE UNITED STATES

8.1 Data Description

In this section, I illustrate two-generation and three-generation mobility models, with and without

demography, using two sources of empirical data: (1) the IPUMS linked representative samples of

17Note that the random mating rule can be defined differently depending on our assumption about the constraint
imposed by the size of male and female populations. Alternatively, random mating rules can be defined as

µij(N
m,Nf ) =

Nm
i + Nf

j

2
(arithmetic mean)

µij(N
m,Nf ) =

√
Nm

i Nf
j (geometric mean)

µij(N
m,Nf ) = aNm

i + (1 − a)Nf
j , 0 ≤ a ≤ 1, (weighted mean)

µij(N
m,Nf ) = Nm

i (male dominance)

µij(N
m,Nf ) = Nf

j (female dominance)

µij(N
m,Nf ) = min(Nm

i ,N
f
j ) (minimum abundance)

These functions are all considered as random mating because the number of marriages does not depend on parameters
related to individual preferences between different class groups.
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U.S. censuses (1850 to 1930) (Ruggles et al. 2019), and (2) the Panel Study of Income Dynamics

(1968 to 2015) (PSID Main Interview User Manual 2019). The IPUMS linked data are constructed

from linking the 1880 complete-count database to 1% samples of the 1850 to 1930 U.S. censuses

of the population. The data combine samples from seven pairs of years—1850–1880, 1860–1880,

1870–1880, 1880–1900, 1880–1910, 1880–1920, and 1880–1930—in which parents’ information is

observed in the first census year and offspring in the second. Each year contains three independent

linked samples: one of men, one of women, and one of married couples.18 Given that the female

data contain many missing cases in occupational variables, the following illustration focuses only

on male mobility. Occupations in the historical census data are coded using the 1950 Census

occupation classifications scheme.19

The empirical analysis also includes three-generation data from the Panel Study of Income

Dynamics, 1968 to 2015. The PSID began in 1968 with a household sample of more than 18,000

Americans from roughly 5,000 families. Original panel members have been followed prospectively

each year through 1997 and then biannually. The study follows targeted respondents according

to a genealogical design. All household members recruited into the PSID in 1968 carry the PSID

“gene” and are targeted for collection of detailed socioeconomic information. Members of new

households created by offspring of the original targeted household heads retain the PSID “gene”

themselves and become permanent PSID respondents. The PSID Family Identification Mapping

System (FIMS) provides a tool to create multigenerational linked samples.20 I supplement the

analysis with simulation data to illustrate a wide range of scenarios that are theoretically important

(e.g., perfect immobility or random mating) but generally not observed in empirical data.

The PSID survey asked household heads and wives to report their occupations in almost every

wave of the survey. These data have been coded into detailed three-digit census categories since

1980. As part of a retrospective project, PSID created the Retrospective Occupation-Industry file by

collecting three-digit occupation codes for the period 1968 to 1980 (Survey Research Center 1999).

18More information about the data can be found on the IPUMS website: https://usa.ipums.org/usa/linked_

data_samples.shtml
19See the original occupation codes at the IPUMS website: https://usa.ipums.org/usa-action/variables/

OCC1950#codes_section.
20More information abou the Family Identification Mapping System can be found on the PSID website http:

//simba.isr.umich.edu/FIMS/.
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I merged these data with cross-year individual files. The occupational variables in the 1968 to 2001

PSID file were originally coded using Census 1970 classification codes, and those in the 2003 to 2015

file were coded using Census 2000 classification codes. Following Hauser (1980), I converted these

three-digit occupations into five major occupational groups (upper nonmanual, lower nonmanual,

upper manual, lower manual, and farming).21 Because the longitudinal data provide multiple-year

observations of each respondent, I use the mode of the cross-year occupational variables (i.e., the

occupation that appears most often) to define a person’s lifetime occupation.

The reproduction rates by fathers’ social class are calculated from the average number of sons

in the data. Strictly speaking, such a measure is not equivalent to the typical Gross Reproduction

Rate (GRR) measure, because GRR is defined as the average number of sons who would be born to

a man during his lifetime if he lives through his childbearing years and conforms to the age-specific

reproduction rates of a given year.22 The surveys omitted sons who died during young childhood

before they were recorded by the next census or before they became a PSID respondent. Also, this

measure may underestimate some fathers’ fertility if they were not linked to some of their sons in

the historical censuses or if they did not live together in the PSID households.

8.2 Empirical Results

Table 1 presents transition matrices in Markov chain mobility models for the IPUMS linked his-

torical census data and the contemporary PSID sample. Following the tradition of mobility table

research, I present father’s occupation as the row variable and son’s occupation as the column

variable. The table also includes GRR by father’s social class for all fathers in the sample as a

synthetic cohort. The mobility probabilities and GRRs are estimated from the multinomial logistic

21For broad occupational groups based on the Census 1970 classification codes, I define upper nonmanual as
professional and administrative workers (codes 1/246); lower nonmanual as sales and clerical workers (codes 260/396);
upper manual as craftsmen (codes 401/696); lower manual as operatives, laborers, and service workers (codes 701/785,
901/984); and farming as farmers, farm managers, and farm laborers (codes 801/846). For broad occupational
groups based on the Census 2000 codes, upper nonmanual includes managerial and professional workers (codes
1/354); lower nonmanual includes service, clerical, and sales occupations (codes 360/593); upper manual includes
construction, extraction, maintenance, and production workers (codes 620/896); lower manual includes transportation
and material moving workers (codes 900/975); and farming includes all the farming- and fishing-related workers
(codes 600/613). The Census 1970 and 2000 occupational classifications can be found at the IPUMS website: https:
//usa.ipums.org/usa-action/variables/OCC#codes_section.

22If the sex ratio at birth is assumed at 1, GRR is approximately half of the Total Fertility Rates.
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regressions and Poisson regressions, respectively (see Appendix Tables S2 and S4). All results in

this section ignore the age structure of the population, as age-classified models require mobility,

fertility, and mortality rates by age group and social class, but such estimates are often unreliable

in surveys due to small sample sizes. For the historical sample, over 55% of fathers belong to the

farming population. This number declines to 6% in the contemporary sample. For both samples,

sons of upper nonmanual fathers are most likely to stay in the same occupation as their fathers:

the chances of immobility are 31.1% and 38.5%, respectively. In the late 19th and early 20th cen-

turies, more than half of sons born into lower manual families inherited their father’s occupations,

as compared to 30.1% of their counterparts in the contemporary sample. Reproduction rates have

declined over time, from higher than 2.6 sons per father at the beginning of the historical sample

to less than 1.6 sons per father in the most recent data. This trend is even more pronounced for

farmers. The social class gradient in fertility has also become less remarkable over time. The gap in

GRR between farmers and upper nonmanual workers decreased from 0.5 in the historical sample to

0.1 in the contemporary sample. In both datasets, sons of upper nonmanual fathers are more likely

to become upper nonmanual workers than are sons of lower nonmanual fathers. Specifically, the

immobility probability for sons born to upper nonmanual fathers is 0.311 and 0.385, respectively,

whereas the upward mobility probability for sons born to lower nonmanual fathers is 0.236 and

0.241, respectively.

Table 2 shows similar estimates from three-generation mobility transition matrices by taking

into account grandfathers’ occupational class. Numbers in the mobility table refer to the percentage

of sons who would achieve a certain occupational group conditional on the father’s and grandfa-

ther’s occupations. Numbers in the column of reproduction rates refer to the number of sons of

a father conditional on his own and his father’s occupations. These numbers are estimated from

the multinomial logistic regressions and Poission regressions shown in Appendix Tables S3 and S5.

In both samples, the highest GRR is observed in families in which both fathers and grandfathers

are farmers. Some estimates may not be reliable, for example, the GRR of farmers with fathers in

lower nonmanual occupations, given the small number of such families (N = 1) in the PSID sample.

For illustration purposes of the methods, I ignore such possible inaccuracies, but future research

should be cautious about fertility estimates from surveys.
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Table 3 shows mobility effects and social reproduction effects estimated from the mobility matri-

ces and GRRs in Tables 1 and 2. The ratio measure of mobility effects is defined as the probability

of sons from upper nonmanual fathers divided by that of sons from lower nonmanual fathers to

become upper nonmanual workers. Note that the result shows only one of many possible choices of

the target group and the baseline group in the definitions of mobility and social reproduction ef-

fects. The measures of social reproduction effects are defined analogously, except that the outcome

measure is the number of sons in upper nonmanual occupations rather than the mobility probability

of sons. The net and total effects are the same for the father generation but may differ for the

grandfather generation. In particular, the net effect of grandfathers is estimated by assuming the

father and grandfather are in the same occupation group, whereas the total effect of grandfathers

is estimated by assuming the father’s occupation is uncontrolled. The net effects are all bigger

than the total effects because the former compares differences in descendants from advantaged and

disadvantaged families under a more extreme condition. The total mobility and social reproduction

effects of grandfathers are smaller than those of fathers because of the “regression toward the mean”

phenomenon. Such a trend does not exist in comparing the net effect of fathers and grandfathers.

Table 4 shows the total social reproduction effect and the effect decomposition based on differ-

ence measures. The total effect of parents (or grandparents) reflects differences in the total number

of sons (or grandsons) in upper nonmanual occupations from fathers (or grandfathers) who are in

upper nonmanual occupations versus lower nonmanual occupations. For example, in the historical

census data, an upper nonmanual grandfather produces 0.431 more grandsons in upper nonmanual

occupations than does a lower nonmanual grandfather. The Kitagawa decomposition shows the

parts of the social reproduction effects associated with fertility (53.4%) and mobility (46.6%). The

proportion explained by the fertility effect is small in the contemporary data (3.5%) because of the

small difference in GRR between men in upper nonmanual and lower nonmanual occupations. As

a result, the mobility effect accounts for over 96% of the total social reproduction effect. The Das

Gupta decomposition method further partitions the total effect into the mobility and demography

effect from the grandparent on the parent generation and from the grandparent on the grandchild

generation net of the parent generation. For example, the total effect of grandparents contains the

effect of grandparents’ own fertility, the effect of grandparents on parents’ fertility, the effect of
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grandparents on parents’ mobility, and the effect of grandparents on grandchildren’s mobility. In

the historical data, the mobility advantage of grandchildren born to upper nonmanual grandparents

relative to those born to lower nonmanual grandparents to achieve upper nonmanual occupations

themselves accounts for 41.9% of the total social reproduction effect of grandparents. This pro-

portion declines to 30.5% in the contemporary data. Most interestingly, in the historical data,

most influences from grandparents to grandchildren operate through the influence of grandparents’

occupation on their own fertility and the influence of grandparents’ occupation on grandchildren’s

social mobility. In the contemporary data, however, most influences from grandparents to grand-

children work through the influence of grandparents’ occupation on parents’ mobility and that on

grandchildren’s mobility. Consistent with our ratio measures in Table 3, parent or grandparent

effects of any kind are smaller in the contemporary data than in the historical data.

Table 5 shows the potential effect of one generation in upper nonmanual occupations on the

distribution of descendants in succeeding generations. The long-term SRE based on a ratio mea-

sure suggests the degree to which a man in an upper nonmanual occupation, compared to one in a

lower nonmanual occupation, has descendants in upper nonmanual occupations. In the historical

sample, the effect begins with a value of 1.46 and eventually converges to equilibrium at 1.16.

Thus, differential reproduction rates that favor upper nonmanual men further amplify the effects

of intergenerational transmission of status in the historical sample. By contrast, in the contem-

porary data, an upper nonmanual man has approximately 1.02 times as many upper nonmanual

descendants as his counterpart in lower nonmanual occupations in the long run. Upper nonman-

ual men produce significantly more descendants in upper nonmanual occupations in the first few

generations, but this advantage almost disappears in the long run. This result can be explained by

the fact that GRR for men in upper nonmanual occupations is slightly higher than that for men in

lower nonmanual occupations (shown in Table 1).

Tables 6 and 7 illustrate results from two-sex models. Table 6 shows two-sex assortative mating

“force of attraction,” which represents the likelihood that men and women from different occupation

groups will form unions, sometimes known as an indicator of preferences between two occupation

groups. The number of marriages between husbands and wives in different occupations in the

PSID data are included in parentheses. These numbers are observed in the first generation but
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are estimated in following generations as a function of the force of attraction and the constraint

imposed by the size of occupation groups for the male and female populations.

Table 7 shows results of the total social reproduction of parents under the assumption of three

alternative mating rules. The random mating rule assumes individuals sort into marriages irre-

spective of their occupational characteristics. The number of marriages is only constrained by

the abundance of eligible men and women in each pair of occupations. The endogamous mating

rule assumes men and women marry only within their own occupation groups. The number of

marriages between men and women in different occupations is zero, and the number of marriages

between men and women of the same occupation is constrained by the group with fewer mem-

bers. I also consider three mobility rules: two-sex mobility assumes both parents equally influence

their offspring’s occupational attainment, same-sex mobility assumes individuals are influenced by

their same-sex parent only, and immobility assumes sons inherit occupations from their fathers and

daughters inherit occupations from their mothers. Results in Table 7 suggest the strongest parent

effect emerges when men and women marry within their own occupation group and offspring inherit

occupations perfectly from their parents. The ratio measure for this scenario is undefined because

it is impossible for offspring born to lower nonmanual parents to become upper nonmanual workers.

The effect is smallest when people mate randomly and offspring’s mobility is influenced only by

their same-sex parent. Overall, the two-sex results emphasize the consequences of interactions be-

tween men and women and the joint effect of fathers and mothers for determining the occupational

distribution of their offspring.

9 CONCLUSIONS

This paper provides an integrated methodological framework that allows researchers to analyze

the combined effects of social mobility and demography in the processes of multigenerational social

inequality among families. It shifts the focus from a pure probabilistic view on individuals’ mobility

probabilities to a distributional view that emphasizes the number of offspring and descendants

who vary in their social class in succeeding generations. Families who have more high-status

offspring may be different from families whose offspring have a higher probability of achieving high
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status, because the joint effect of fertility and mortality may operate against families’ advantages

in social mobility. The moderating effects of demographic forces often accumulate over time, as the

intergenerational reproduction of families is a dual endeavor to achieve both reproductive success

and status inheritance across generations. I illustrated how to define and estimate various types of

multigenerational processes and effects with and without the role of demography from short- and

long-term perspectives. More specifically, these methodological issues include differences between

two-generation and multigenerational transition matrices, net and total social reproduction effects

from one generation to succeeding generations, the effect decomposition, equilibrium states of

long-term multigenerational effects, three types of heterogeneity in multigenerational mobility, and

two-sex versus one-sex multigenerational models and their different implications for population

dynamics. Careful and creative use of these models with appropriate multigenerational data will

advance our knowledge of family processes in the past and help forecast trends in the future.

Despite their advantages over conventional two-generation mobility methods based on Markov

chains, the multigenerational models proposed in this paper are far from complete. I outline several

promising directions for future research to consider, when more refined statistical demographic

techniques are available for modeling the complex interactions among family members.

First, all models discussed in this paper assume a single, constant measure of socioeconomic

status for each generation, ignoring changes in parents’ status across their own and their children’s

life spans. From a life-course perspective, common indicators of social status—including education,

employment, and earnings prospects—evolve over time. Life-cycle changes in labor supply, human

capital accumulation, consumption, and nonmarket returns to education jointly shape individuals’

life trajectories and their offspring’s childhood skill formation (Heckman 1976; Heckman et al. 2013).

Ignoring parents’ and offspring’ life cycles in the estimation of intergenerational association may lead

to “life-cycle bias” (Mazumder 2005; Haider and Solon 2006). Furthermore, shared lifetimes, namely

years during which two or more generations overlap, often vary across families and may predict

the cumulative amount of influence from one generation to another (Song and Mare forthcoming).

The complex linkage between within-generation status changes with age and between-generation

transmission of statuses warrants future consideration, given the growth of precarious work and

earnings instability in the U.S. labor market (Gottschalk et al. 1994; Kalleberg 2009).
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Second, models in this paper do not address problems of causal inference, especially mechanisms

and identification issues in estimating causal effects of grandparents and other kin. A fast-growing

literature in sociology and economics points to causality as a central problem in multigenerational

research and offers various approaches to gauging biases in traditional association measures. An-

derson et al. (2018) provide a meta-analysis of recent studies on grandparent effects on education,

showing a wide range of effect estimates that vary by social contexts, analytical methods, and the

way the concept of grandparent effects is operationalized. Other problems, such as collider bias,

unobserved confounders, and survivorship selection (e.g., Breen 2018; Sharkey and Elwert 2011;

Song 2016), have also appeared in studies that aim to make causal claims of multigenerational

influence using counterfactual analyses, causal graphical models, and methods based on inverse

probability treatment weighting (IPTW).

Third, models in this paper ignore the complex role of migration in shaping multigenerational

influences and population dynamics. Without migration, all changes in a closed population result

only from births and deaths, as illustrated in the social reproduction model in equation (11). Yet,

migration, both internal and international, may change the composition of a population, household

structure, and relationships among extended family members in origin and destination places.

Zeng and Xie (2014) provide an example of grandparent influences in rural China, where many are

skip-generation households with children living with their grandparents while their parents leave

to work in urban areas. More work is needed to test whether and how the mobility process is

interdependent with migration, even many generations back, as well as how big events, such as

mass migration and refugee resettlement, influence social mobility for descendants of migrant and

native-born populations.

Fourth, all socioeconomic measures embrace some degree of uncertainty that may result from

random measurement errors or systematic biases. Substantive and methodological issues in the

latent structure of variables are an old topic in sociology (e.g., Coleman 1964b), but they have re-

cently been highlighted in analyses of multigenerational mobility (Solon 2018; Torche and Corvalan

2018; Clark 2014). Random noise in socioeconomic measures may lead to attenuation bias, the

classical errors-in-variables problem, which shrinks estimated intergenerational correlations toward

zero. Yet, no matter how accurately measured, indicators like income, occupation, and education
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are always a proxy for the underlying concept of “social status.” In fact, almost all methodological

issues described in this paper are still valid in models that incorporate measurement errors or a la-

tent structure of underlying variables. However, as Singer and Spilerman (1976: 454) note, dealing

with the hidden structure of variables in Markov chains would lead to a considerable increase in

complexity in both theory and methods.

All of these issues lie outside the scope of this paper, but they are central to the study of

social stratification and mobility and to a better understanding of the social mechanisms that

govern continuity and changes within families, dynasties, and populations. I leave these important

modifications and challenges to future research.
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Table 1. Mobility Transition Matrix and Gross Reproduction Rates

Gross Reproduction
Rate (GRR)

Historical Social Mobility

Son’s Occupation

Father’s Occupation 1 2 3 4 5 Total N

1. Upper nonmanual 2.6 31.1 32.2 8.0 20.9 7.8 100.0 8,564

2. Lower nonmanual 2.4 23.6 44.9 8.8 17.7 5.0 100.0 3,575

3. Upper manual 2.6 10.0 21.6 24.1 36.4 7.9 100.0 9,609

4. Lower manual 2.6 7.7 15.8 9.8 58.6 8.1 100.0 13,306

5. Farming 3.1 7.0 2.9 2.4 9.2 78.5 100.0 43,079

N 8,514 9,806 5,656 17,684 36,473 78,133

Gross Reproduction
Rate (GRR)

Contemporary Social Mobility from PSID

Son’s Occupation

Father’s Occupation 1 2 3 4 5 Total N

1. Upper nonmanual 1.5 38.5 22.5 22.5 14.9 1.5 100.0 910

2. Lower nonmanual 1.4 24.1 28.8 26.2 20.3 0.6 100.0 473

3. Upper manual 1.4 16.7 21.5 38.6 22.2 1.0 100.0 1,473

4. Lower manual 1.4 12.7 22.0 33.2 30.1 2.1 100.0 1,024

5. Farming 1.6 13.4 10.7 37.8 20.2 17.9 100.0 262

N 875 911 1,337 920 99 4,142

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010); Panel Study of Income Dynamics,

1968–2015.

Notes: The two-generation transition matrices show percentages converted from mobility probabilities, e.g., pY2=j|Y1=i; namely,

the son of a father in social position i ends up in position j (see equation (1)).
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Table 2. Three-Generation Mobility Transition Matrices

Gross
Reproduction
Rate (GRR)

Historical Social Mobility

Son’s Occupation

Grandfather’s Occupation Father’s Occupation 1 2 3 4 5 Total N

1. Upper nonmanual 1. Upper nonmanual 2.5 37.6 34.1 7.4 16.1 4.7 100.0 3,204

2. Lower nonmanual 2.3 28.9 46.5 8.0 13.4 3.2 100.0 934

3. Upper manual 2.5 16.3 27.2 21.6 29.5 5.3 100.0 660

4. Lower manual 2.5 13.8 21.6 10.9 48.0 5.7 100.0 753

5. Farming 2.8 17.5 6.2 4.6 12.0 59.7 100.0 1,034

N 1,869 1,934 585 1,322 875 6,585

2. Lower nonmanual 1. Upper nonmanual 2.4 33.6 37.0 7.9 17.6 3.9 100.0 403

2. Lower nonmanual 2.2 25.3 49.5 8.4 14.3 2.6 100.0 637

3. Upper manual 2.4 14.0 28.4 22.3 31.1 4.2 100.0 156

4. Lower manual 2.3 11.8 22.4 11.2 50.1 4.5 100.0 228

5. Farming 2.6 17.4 7.6 5.5 14.6 54.9 100.0 150

N 371 571 154 347 131 1,574

3. Upper manual 1. Upper nonmanual 2.5 25.8 32.3 12.2 22.7 7.0 100.0 1,135

2. Lower nonmanual 2.3 19.7 43.8 13.1 18.7 4.7 100.0 451

3. Upper manual 2.5 9.1 21.1 29.2 34.1 6.5 100.0 4,648

4. Lower manual 2.5 7.6 16.5 14.5 54.5 6.8 100.0 2,051

5. Farming 2.8 9.2 4.5 5.8 12.9 67.7 100.0 1,573

N 1,107 1,954 1,944 3,248 1,605 9,858

4. Lower manual 1. Upper nonmanual 2.6 23.6 32.2 8.6 29.1 6.5 100.0 1,142

2. Lower nonmanual 2.4 18.1 44.0 9.4 24.1 4.4 100.0 591

3. Upper manual 2.6 8.4 21.1 20.7 43.8 6.0 100.0 1,797

4. Lower manual 2.5 6.4 15.0 9.3 63.6 5.7 100.0 6,056

5. Farming 2.8 8.7 4.7 4.3 17.2 65.1 100.0 2,596

N 1,139 2,038 1,202 5,557 2,246 12,182

5. Farming 1. Upper nonmanual 2.8 28.2 29.3 6.7 22.9 12.9 100.0 2,680

2. Lower nonmanual 2.6 22.5 41.4 7.5 19.7 9.0 100.0 962

3. Upper manual 2.8 10.9 20.9 17.4 37.7 13.0 100.0 2,348

4. Lower manual 2.8 8.5 15.1 8.0 55.7 12.7 100.0 4,218

5. Farming 3.1 6.5 2.6 2.0 8.4 80.4 100.0 37,726

N 4,028 3,309 1,771 7,210 31,616 47,934

Gross
Reproduction
Rate (GRR)

Contemporary Social Mobility from PSID

Son’s Occupation

Grandfather’s Occupation Father’s Occupation 1 2 3 4 5 Total N

1. Upper nonmanual 1. Upper nonmanual 1.4 48.1 22.5 17.7 10.6 1.1 100.0 234

2. Lower nonmanual 1.4 33.4 30.3 21.2 14.6 0.4 100.0 63

3. Upper manual 1.4 26.4 25.3 31.2 16.4 0.7 100.0 109

4. Lower manual 1.4 21.1 27.4 27.7 22.4 1.5 100.0 63

5. Farming 1.5 25.6 17.7 29.4 15.2 12.1 100.0 13

N 179 119 110 68 6 482

2. Lower nonmanual 1. Upper nonmanual 1.3 45.2 25.1 14.9 13.5 1.3 100.0 131

2. Lower nonmanual 1.3 30.7 33.0 17.6 18.2 0.5 100.0 69

3. Upper manual 1.3 24.6 27.9 26.1 20.7 0.8 100.0 89
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4. Lower manual 1.3 19.0 29.3 22.5 27.4 1.7 100.0 66

5. Farming 1.4 23.5 19.2 24.2 18.9 14.1 100.0 1

N 115 100 70 67 4 356

3. Upper manual 1. Upper nonmanual 1.5 34.2 25.0 25.0 14.0 1.8 100.0 206

2. Lower nonmanual 1.4 22.1 31.2 27.9 18.0 0.7 100.0 125

3. Upper manual 1.4 16.5 24.7 38.7 19.0 1.0 100.0 422

4. Lower manual 1.4 12.9 26.0 33.5 25.4 2.2 100.0 200

5. Farming 1.5 15.2 16.3 34.5 16.7 17.4 100.0 9

N 195 248 320 184 15 962

4. Lower manual 1. Upper nonmanual 1.4 32.5 23.6 23.6 18.9 1.4 100.0 196

2. Lower nonmanual 1.4 20.7 29.0 26.0 23.8 0.6 100.0 141

3. Upper manual 1.4 15.4 22.8 35.9 25.1 0.8 100.0 466

4. Lower manual 1.4 11.7 23.5 30.3 32.7 1.7 100.0 390

5. Farming 1.5 14.6 15.6 33.1 22.8 13.9 100.0 44

N 217 292 383 325 20 1,237

5. Farming 1. Upper nonmanual 1.6 30.9 15.2 32.4 19.2 2.3 100.0 143

2. Lower nonmanual 1.6 19.8 18.9 36.0 24.4 0.9 100.0 75

3. Upper manual 1.5 13.9 14.0 46.8 24.2 1.2 100.0 387

4. Lower manual 1.6 10.7 14.6 40.1 32.0 2.6 100.0 305

5. Farming 1.7 12.1 8.8 39.6 20.2 19.3 100.0 195

N 169 152 454 276 54 1,105

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010); Panel Study of Income Dynamics,

1968–2015.

Notes: The three-generation transition matrix shows percentages converted from mobility probabilities, e.g., pY3=j|Y2=i,Y1=k;

namely, the son of a father in social position i and a grandfather in social position k ends up in position j.
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Table 3. Ratio Measures of Mobility Effects and Social Reproduction Effects by Comparing Upper Nonmanual and Lower Nonmanual

Families in Producing Offspring in Upper Nonmanual Occupations

Mobility Effect Social Reproduction Effect

Net Effect Total Effect Net Effect Total Effect
(assuming fathers and

grandfathers in the
same occupation)

(unconditional on
fathers’ occupations)

(assuming fathers and
grandfathers in the
same occupation)

(unconditional on
fathers’ occupations)

Historial data

Parents 1.317 1.317 1.456 1.456

(0.044) (0.044) (0.055) (0.055)

Grandparents 1.490 1.133 1.720 1.344

(0.085) (0.058) (0.109) (0.080)

Contemporary data

Parents 1.596 1.596 1.622 1.622

(0.146) (0.146) (0.164) (0.164)

Grandparents 1.566 1.178 1.691 1.277

(0.195) (0.121) (0.233) (0.157)

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010); Panel Study of Income Dynamics, 1968–2015.
Notes: Standard errors of the predicted net and total mobility effect and social reproduction effect are estimated from 1,000 bootstrap samples. The net mobility
effect refers to the ratio between the probability of achieving upper nonmanual occupations by having upper nonmanual parents rather than lower nonmanual parents
(or upper nonmanual grandparents and parents versus lower nonmanual grandparents and parents). The total mobility effect is calculated from the ratio between the
the probability of achieving upper nonmanual occupations by having upper nonmanual grandparents rather than lower nonmanual grandparents. For the net social
reproduction effect, we compare parents (and grandparents) in upper nonmanual occupations with those in lower nonmanual occupations in producing upper nonmanual
offspring (or grandchildren). For the total effect of grandparents, we compare grandparents who are in upper nonmanual occupations with those in lower nonmanual
occupations in producing upper nonmanual grandchildren. The mobility effects and social reproduction effects are defined in equations (19)–(24).
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Table 4. Effect Decomposition Based on Difference Measures of Social Reproduction Effects by Comparing Upper Nonmanual and Lower

Nonmanual Families in Producing Offspring in Upper Nonmanual Occupations

Kitagawa Decomposition Das Gupta Decomposition

Total Social Total Demography Total Mobility Demography Demography Mobility Mobility

Reproduction Effect Effect Effect Effect(1) Effect(2) Effect(1) Effect(2)

(%) (%) (%) (%) (%) (%) (%)

Historical data

Parents 0.253 0.068 0.185 0.068 - 0.185 -

(100.0) (26.7) (73.3) (26.7) (73.3)

Grandparents 0.431 0.230 0.201 0.146 0.085 0.020 0.181

(100.0) (53.4) (46.6) (33.8) (19.7) (4.6) (41.9)

Contemporary data

Parents 0.215 0.007 0.207 0.007 - 0.207 -

(100.0) (3.5) (96.5) (3.5) (96.5)

Grandparents 0.157 0.048 0.109 0.011 0.038 0.061 0.048

(100.0) (30.8) (69.2) (6.7) (24.0) (38.7) (30.5)

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010); Panel Study of Income Dynamics, 1968–2015.

Note: Numbers in the parentheses are percentages of the total effect explained by each of the demographic and social mobility components. The decomposition methods are

described in equations (28), (35) and (37)–(40).
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Table 5. Long-term Social Reproduction Effects

Distribution of Descendants Long-term SRE
in producing
upper nonmanual
descendants

Occupation in the

founding generation 1. Upper nonmanual 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming

Historical data

After n generations

1 Upper nonmanual 0.81 0.84 0.21 0.54 0.20 1.46

Lower nonmanual 0.55 1.06 0.21 0.42 0.12

5 Upper nonmanual 17.24 25.45 10.36 35.51 30.55 1.12

Lower nonmanual 15.36 22.87 9.23 31.52 25.29

10 Upper nonmanual 2,190.05 3,036.50 1,288.62 4,507.76 5,566.03 1.15

Lower nonmanual 1,906.90 2,652.90 1,124.17 3,930.59 4,775.19

∞ Upper nonmanual - - - - - 1.16

Lower nonmanual - - - - -

Contemporary data

After n generations

1 Upper nonmanual 0.56 0.33 0.33 0.22 0.02 1.62

Lower nonmanual 0.34 0.41 0.38 0.29 0.01

5 Upper nonmanual 1.38 1.44 1.90 1.34 0.10 1.02

Lower nonmanual 1.35 1.40 1.85 1.31 0.09

10 Upper nonmanual 8.31 8.63 11.41 8.05 0.57 1.02

Lower nonmanual 8.12 8.44 11.16 7.87 0.56

∞ Upper nonmanual - - - - - 1.02

Lower nonmanual - - - - -

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010); Panel Study of Income Dynamics, 1968–2015.

Notes: Intergenerational mobility is assumed to follow a Markovian process. Similar results are valid if mobility follows higher-order Markovian processes. The long-term

effect is defined as the ratio of upper nonmanual progeny per upper nonmanual ancestor over upper nonmanual progeny per lower nonmanual ancestor. The ratio = 1

means no long-term effect. The effect is defined in equation (54).
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Table 6. Two-Sex Assortative Mating and Force of Attraction (age 25-60)

Occupation, Women

Occupation, Men 1. Upper nonmanual 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming N

1. Upper nonmanual 0.858 0.723 0.181 0.253 0.018

(348) (431) (78) (146) (2) 1,005

2. Lower nonmanual 0.321 0.643 0.219 0.323 0.010

(98) (259) (70) (127) (1) 555

3. Upper manual 0.274 0.677 0.642 0.673 0.164

(126) (487) (316) (465) (19) 1,413

4. Lower manual 0.220 0.400 0.560 0.849 0.307

(95) (263) (259) (537) (35) 1,189

5. Farming 0.078 0.142 0.194 0.409 0.863

(13) (27) (33) (77) (69) 219

N 680 1,467 756 1,352 126 4,381

Source: Panel Study of Income Dynamics, 1968–2015.

Notes: Numbers in parentheses refer to the number of marriages within each assortative mating category. The parameter for the

“force of attraction” (αij) represents the likelihood that men and women from two occupation groups will form unions. This value is a

function of preferences between two occupation groups and constraints imposed by the sizes of the two groups. The force of attraction

is defined in equation (66).
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Table 7. Ratio Measures of Social Reproduction Effects under Different Mating and Mobility Rules

Total Social Reproduction Effects of Upper Nonmanual

vs. Lower Nonmanual Parents

Mating Rule Intergenerational Mobility Rule Difference measure Ratio measure

Random mating Same-sex (father-son; mother-daughter) 0.034 2.014

Two-sex 0.041 1.987

Immobility (perfect inheritance) 0.160 ∞
Endogamous mating Same-sex (father-son; mother-daughter) 0.193 2.940

Two-sex 0.234 2.900

Immobility 0.695 ∞
Assortative mating Same-sex (father-son; mother-daughter) 0.103 3.225

Two-sex 0.125 3.180

Immobility (perfect inheritance) 0.356 ∞

Source: Panel Study of Income Dynamics (1968–2015) and simulation data.

Notes: For the total effect of parents, we compare parents who are in upper nonmanual occupations with those in lower non-

manual occupations in producing upper nonmanual offspring. The ratio = 1 means no effect. The effect takes into account

probabilities that men and women in upper nonmanual (or lower nonmanual) occupations will form unions, produce offspring,

and transmit their social status to their offspring. The random mating rule assumes mating between individuals where the

choice of partner is not influenced by occupations. The endogamous mating rule assumes men and women marry only within

their own occupation groups. The assortative mating rule assumes individuals with similar occupations mate with one another

more frequently than would be expected under a random mating rule. The same-sex mobility rule assumes individuals are in-

fluenced by their same-sex parent only (namely, sons by fathers and daughters by mothers). The two-sex mobility rule assumes

individuals’ occupations are influenced by occupations of both parents. The immobility rule assumes sons inherit occupations

from their fathers and daughters inherit occupations from their mothers.
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Appendix Table S1. A Summary of Intergenerational Social Mobility Research

Models Composition Mobility Demography Methods Exemplary Prior Research

Classic Mobility Models One-Sex Two-Generation No Markov chain models Prais (1955)

Mobility tables and path analysis Blau and Duncan (1967); Featherman and
Hauser (1978)

Loglinear models Erikson and Goldthorpe (1992); Grusky and
Hauser (1984); Hout (1988); Jonsson et al.
(2009); Torche (2011); Yamaguhi (1987); Xie
(1992)

Log-log regression Solon (1992)

One-Sex Multiple-Generation No Loglinear models Chan and Boliver (2013)

Survival analysis Zeng and Xie (2014)

Rank-rank regression Pfeffer and Killewald (2017)

Log-log regression Solon (2014, 2018)

Two-Sex Two-Generation No Loglinear models Beller (2009)

Rank-rank regression Chetty et al. (2014)

Log-log regression Lee and Solon (2009)

Two-Sex Multiple-Generation No Path analysis Warren and Hauser (1997)

Joint
Demography-Mobility
Models

One-Sex Two-Generation Yes Markov chain models with demography Matras (1961); Preston (1974); Mare (1997);
Mare and Maralani (2006); Maralani (2013)

One-Sex Multiple-Generation Yes Markov chain models with demography Mare and Song (2014)

Two-Sex Two-Generation Yes Markov chain models with demography Preston and Campbell (1997)

Two-Sex Multiple-Generation Yes Markov chain models with demography Song and Mare (2016)
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Appendix Table S2. Two-Generation Reproduction and Social Mobility Models, Historical Data

Mobility Model: Son’s Occupation

Gross Reproduction Rate (Multinomial Logistic Regression, Base = 1. Upper nonmanual)

(Poisson Regression) 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming

Father’s Occupation

2. Lower nonmanual -0.100*** (0.02) 0.607*** (0.05) 0.371*** (0.079) 0.108* (0.061) -0.161* (0.093)

3. Upper manual 0.004 (0.015) 0.732*** (0.048) 2.234*** (0.057) 1.686*** (0.048) 1.145*** (0.065)

4. Lower manual -0.004 (0.014) 0.675*** (0.047) 1.595*** (0.06) 2.418*** (0.045) 1.432*** (0.061)

5. Farming 0.161*** (0.012) -0.908*** (0.043) 0.280*** (0.056) 0.667*** (0.039) 3.803*** (0.047)

Intercept 0.956*** (0.011) 0.037 (0.027) -1.355*** (0.043) -0.394*** (0.031) -1.388*** (0.043)

n 27,734 78,133

Log likelihood -57,136

AIC 114,283 163,900

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010).

Notes: Standard errors are in parentheses. The Gross Reproduction Rates and mobility probabilities estimated from these models are presented in Table 1.
∗p < .05;∗∗ p < .01;∗∗∗ p < .001 (two-tailed test).S
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Appendix Table S3. Three-Generation Reproduction and Social Mobility Models, Historical Data

Mobility Model: Son’s Occupation

Gross Reproduction Rate (Multinomial Logistic Regression, Base = 1. Upper nonmanual)

(Poisson Regression) 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming

Father’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.058** (0.028) 0.196** (0.076) 0.182* (0.11) 0.203** (0.088) -0.079 (0.128)

3. Upper manual 0.013 (0.017) 0.323*** (0.054) 0.878*** (0.066) 0.721*** (0.055) 0.775*** (0.068)

4. Lower manual 0.029* (0.016) 0.411*** (0.053) 0.620*** (0.068) 1.057*** (0.053) 0.785*** (0.065)

5. Farming 0.111*** (0.015) 0.136*** (0.045) 0.183*** (0.061) 0.640*** (0.047) 1.294*** (0.054)

Grandfather’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.085*** (0.02) 0.574*** (0.052) 0.342*** (0.08) 0.077 (0.062) -0.131 (0.094)

3. Upper manual 0.004 (0.016) 0.612*** (0.051) 1.907*** (0.061) 1.443*** (0.051) 0.959*** (0.068)

4. Lower manual -0.016 (0.015) 0.545*** (0.05) 1.388*** (0.063) 2.092*** (0.048) 1.192*** (0.064)

5. Farming 0.098*** (0.013) -0.934*** (0.048) 0.290*** (0.061) 0.469*** (0.043) 3.306*** (0.05)

Intercept 0.916*** (0.014) -0.099*** (0.036) -1.625*** (0.055) -0.848*** (0.042) -2.080*** (0.058)

n 27,734 78,133

Log likelihood -57,104

AIC 114,226.5 162,099.0

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010).

Notes: Standard errors are in parentheses. The Gross Reproduction Rates and mobility probabilities estimated from these models are presented in Table 2.
∗p < .05;∗∗ p < .01;∗∗∗ p < .001 (two-tailed test).
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Appendix Table S4. Two-Generation Reproduction and Social Mobility Models, Contemporary Data

Mobility Model: Son’s Occupation

Gross Reproduction Rate (Multinomial Logistic Regression, Base = 1. Upper nonmanual)

(Poisson Regression) 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming

Father’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.016 (0.059) 0.711*** (0.154) 0.619*** (0.157) 0.773*** (0.171) -0.419 (0.645)

3. Upper manual -0.032 (0.043) 0.789*** (0.122) 1.373*** (0.116) 1.230*** (0.132) 0.353 (0.387)

4. Lower manual -0.021 (0.047) 1.083*** (0.141) 1.496*** (0.136) 1.808*** (0.145) 1.396*** (0.36)

5. Farming 0.11 (0.072) 0.312 (0.268) 1.575*** (0.215) 1.360*** (0.24) 3.514*** (0.352)

Intercept 0.375*** (0.034) -0.535*** (0.088) -0.535*** (0.088) -0.945*** (0.101) -3.219*** (0.273)

n 2,689 4,142

Log likelihood -3,457

AIC 6,924.4 11,609.8

Source: Panel Study of Income Dynamics, 1968–2015.

Notes: Standard errors are in parentheses. The Gross Reproduction Rates and mobility probabilities estimated from these models are presented in Table 1.
∗p < .05;∗∗ p < .01;∗∗∗ p < .001 (two-tailed test).
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Appendix Table S5. Three-Generation Reproduction and Social Mobility Models, Contemporary Data

Mobility Model: Son’s Occupation

Gross Reproduction Rate (Multinomial Logistic Regression, Base = 1. Upper nonmanual)

(Poisson Regression) 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming

Father’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.059 (0.072) 0.17 (0.184) -0.105 (0.198) 0.306 (0.214) 0.241 (0.664)

3. Upper manual 0.029 (0.058) 0.442*** (0.156) 0.686*** (0.157) 0.620*** (0.181) 0.890* (0.507)

4. Lower manual 0.01 (0.057) 0.435*** (0.154) 0.679*** (0.154) 0.966*** (0.174) 0.703 (0.493)

5. Farming 0.129** (0.058) 0.052 (0.171) 1.049*** (0.159) 1.033*** (0.181) 1.217*** (0.472)

Grandfather’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.018 (0.059) 0.659*** (0.156) 0.547*** (0.159) 0.681*** (0.174) -0.498 (0.647)

3. Upper manual -0.051 (0.044) 0.715*** (0.126) 1.166*** (0.12) 1.031*** (0.136) 0.142 (0.394)

4. Lower manual -0.045 (0.049) 1.019*** (0.145) 1.272*** (0.14) 1.569*** (0.15) 1.177*** (0.369)

5. Farming 0.035 (0.076) 0.387 (0.278) 1.136*** (0.226) 0.985*** (0.251) 3.065*** (0.387)

Intercept 0.354*** (0.051) -0.757*** (0.131) -1.000*** (0.136) -1.509*** (0.16) -3.818*** (0.458)

n 2,690

Log likelihood -3,452.0

AIC 6,921.9

Source: Panel Study of Income Dynamics, 1968–2015.

Notes: Standard errors are in parentheses. The Gross Reproduction Rates and mobility probabilities estimated from these models are presented in Table 2.
∗p < .05;∗∗ p < .01;∗∗∗ p < .001 (two-tailed test).
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APPENDIX: R Codes Used in the Analysis of PSID Data

1 library(readstata13)

2 library(tidyr)

3 library(dplyr)

4 library(expm)

5 library(nnet)

6 library(reshape)

7 require(boot)

8
9 psid.male <- read.dta13("psid_mobility.dta", nonint.factors=T) %>%

10 select(c(f_id , sex , occ , occ_f, occ_m, occ_ff, occ_fm, occ_mf, occ_mm, occ_gf, sex)) %>%

drop_na(occ , occ_f, occ_gf) %>% filter(sex ==1)

11
12 # Table 1

13 # Describe 2-generation mobility table (transition matrix)

14
15 summary(m1 <- multinom(occ ~ relevel(as.factor(occ_f), ref = "1"), data = psid.male))

16
17 data.2g <- cbind(psid.male , fitted=fitted(m1))

18 mobility2g <- data.2g %>%

19 group_by(occ_f) %>%

20 summarise(son1=mean(fitted .1), son2=mean(fitted .2), son3=mean(fitted .3), son4=mean(fitted

.4), son5=mean(fitted .5))

21 with(psid.male , addmargins(table(occ_f, occ)))

22
23 # Describe fertility by occupation

24
25 sons.count <- psid.male %>% filter(f_id != 0) %>% arrange(-f_id) %>% group_by(f_id , occ_f)

%>% summarise(sons.count=n())

26
27 summary(m2 <- glm(sons.count ~ relevel(as.factor(occ_f), ref = "1"), family="poisson", data=

sons.count))

28 GRR1 <- exp(c(0, rep(coefficients(m2)[1],4))+coefficients(m2))

29
30 # Table 2

31 # Describe 3-generation mobility table

32
33 summary(m3 <- multinom(occ ~ relevel(as.factor(occ_gf), ref = "1")+relevel(as.factor(occ_f),

ref = "1"), data = psid.male))

34 data.3g <- cbind(psid.male , fitted=fitted(m3))

35 mobility3g <- data.3g %>%

36 group_by(occ_gf , occ_f) %>%

37 summarise(son1=mean(fitted .1), son2=mean(fitted .2), son3=mean(fitted .3), son4=mean(fitted

.4), son5=mean(fitted .5))

38 with(psid.male , addmargins(table(occ_f, occ , occ_gf)))

39
40 # Describe fertility by occupation

41 sons.count2 <- psid.male %>% filter(f_id != 0) %>% arrange(-f_id) %>% group_by(f_id, occ_gf,

occ_f) %>% summarise(sons.count2=n())

42
43 summary(m4 <- glm(sons.count2 ~ relevel(as.factor(occ_gf), ref = "1")+relevel(as.factor(occ_

f), ref = "1"), family="poisson", data=sons.count2))

44 intercept <- coefficients(m4)[1]

45 gf_coef <- c(0, coefficients(m4)[2:5])

46 f_coef <- c(0, coefficients(m4)[6:9])

47
48 GRR2 <- exp(intercept) * (exp(gf_coef) %x% exp(f_coef))

49
50 # Table 3 Mobility effect , net SRE , Total SRE

51
52 # net and total mobility effect of p

53 mobility2g <- as.matrix(mobility2g [1:5, 2:6])

54 mobility2g [1,1]/mobility2g [2,1]

55
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56 # net mobility effect of gp

57 mobility3g <- as.matrix(mobility3g [1:25, 3:7])

58 mobility3g [1,1]/mobility3g [7,1] #assume p and gp in the same class

59
60 # total mobility effect of gp

61 G0.1 <- c(1,0,0,0,0)

62 G0.2 <- c(0,1,0,0,0)

63 (G0.1 %*% mobility2g %*% mobility3g [1:5 ,])[1,1]/(G0.2%*%mobility2g%*%mobility3g [6:10 ,]) [1,1]

64
65 # SRE of parents

66 SRE.f <- (GRR1 [1]*mobility2g [1 ,1])/(GRR1 [2]*mobility2g [2,1])

67
68 # NSRE of grandparents

69 NSRE.gf <- (GRR2 [1]*mobility3g [1 ,1])/(GRR2 [7]*mobility3g [7,1])

70
71 # TSRE of grandparents

72
73 G1.1 <- G0.1 %*% diag(GRR1) %*% mobility2g

74 G2.1 <- G1.1 %*% diag(GRR2 [1:5]) %*% mobility3g [1:5,]

75
76 G1.2 <- G0.2 %*% diag(GRR1) %*% mobility2g

77 G2.2 <- G1.2 %*% diag(GRR2 [6:10]) %*% mobility3g [6:10 ,]

78
79 TSRE.gf <- G2.1[1]/G2 .2[1]

80
81 # bootstrap standard errors

82
83 bs <- function(formula1 , formula2 , formula3 , formula4 , data , indices) {

84 d1 = data[indices ,]

85
86 m1 = multinom(formula1 , data=d1 , maxit =1000, trace=FALSE)

87 data.2g <- cbind(d1 , fitted=fitted(m1))

88 mobility2g <- data.2g %>% group_by(occ_f) %>%

89 summarise(son1=mean(fitted .1), son2=mean(fitted .2), son3=mean(fitted .3), son4=mean(

fitted .4), son5=mean(fitted .5))

90
91 sons.count <- d1 %>% filter(f_id != 0) %>% arrange(-f_id) %>%

92 group_by(f_id, occ_f) %>% summarise(sons.count=n())

93 m2 = glm(formula2 , family="poisson", data=sons.count , maxit =1000, trace=FALSE)

94 GRR1 <- exp(c(0, rep(coefficients(m2)[1],4))+coefficients(m2))

95
96 m3 = multinom(formula3 , data=d1 , maxit =1000, trace=FALSE)

97 data.3g <- cbind(d1 , fitted=fitted(m3))

98 mobility3g <- data.3g %>% group_by(occ_gf , occ_f) %>%

99 summarise(son1=mean(fitted .1), son2=mean(fitted .2), son3=mean(fitted .3), son4=mean(

fitted .4), son5=mean(fitted .5))

100
101 sons.count2 <- d1 %>% filter(f_id != 0) %>% arrange(-f_id) %>% group_by(f_id, occ_gf, occ_

f) %>% summarise(sons.count2=n())

102 m4 = glm(formula4 , family="poisson", data=sons.count2 , maxit =1000, trace=FALSE)

103 GRR2 <- exp(coefficients(m4)[1]) * (exp(c(0, coefficients(m4)[2:5])) %x% exp(c(0,

coefficients(m4)[6:9])))

104
105 mobility2g = as.matrix(mobility2g [1:5, 2:6])

106 mobility.f = mobility2g [1,1]/mobility2g [2,1]

107
108 mobility3g = as.matrix(mobility3g [1:25 , 3:7])

109 n.mobility.gf = mobility3g [1,1]/mobility3g [7,1]

110
111 G0.1 <- c(1,0,0,0,0); G0.2 <- c(0,1,0,0,0)

112 t.mobility.gf = (G0.1 %*% mobility2g %*% mobility3g [1:5 ,])[1,1]/(G0.2%*%mobility2g%*%

mobility3g [6:10 ,]) [1,1]

113
114 SRE.f = (GRR1 [1]*mobility2g [1,1])/(GRR1 [2]*mobility2g [2,1])

115 NSRE.gf = (GRR2 [1]*mobility3g [1,1])/(GRR2 [7]*mobility3g [7,1])

116
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117 G1.1 <- G0.1 %*% diag(GRR1) %*% mobility2g

118 G2.1 <- G1.1 %*% diag(GRR2 [1:5]) %*% mobility3g [1:5,]

119 G1.2 <- G0.2 %*% diag(GRR1) %*% mobility2g

120 G2.2 <- G1.2 %*% diag(GRR2 [6:10]) %*% mobility3g [6:10 ,]

121 TSRE.gf = G2 .1[1]/G2.2[1]

122
123 estimates = rbind(mobility.f, SRE.f, n.mobility.gf, t.mobility.gf, NSRE.gf, TSRE.gf)

124
125 return(t(estimates))

126 }

127
128 # enable parallel

129
130 cl <- makeCluster (2)

131 clusterExport(cl, "multinom")

132
133 # 1000 replications

134 set.seed (1984)

135
136 #system.time(boot(data=psid.male , statistic=bs, R=1000 , parallel = "multicore", ncpus=2,

formula=occ ~ relevel(as.factor(occ_f), ref = "1")))

137
138 results <- boot(

139 data=ipums , statistic=bs , R=1000, parallel = "multicore", ncpus=2, cl=cl , formula1=occ ~

relevel(as.factor(occ_f), ref = "1"), formula2=sons.count ~ relevel(as.factor(occ_f),

ref = "1"), formula3=occ ~ relevel(as.factor(occ_gf), ref = "1")+relevel(as.factor(occ

_f), ref = "1"),

140 formula4=sons.count2 ~ relevel(as.factor(occ_gf), ref = "1")+relevel(as.factor(occ_f), ref

= "1")

141 )

142
143
144 # Table 4

145 # Kitagawa SRE decomposition of SRE.f

146 kita.demo.eff.f <- (GRR1[1]-GRR1 [2])*(mobility2g [1 ,1]+ mobility2g [2,1])/2

147 kita.mobi.eff.f <- (GRR1 [1]+ GRR1 [2])/2*(mobility2g [1,1]- mobility2g [2 ,1])

148
149 # Kitagawa SRE decomposition of TSRE.gf

150 kita.demo.eff.gf <- sum((GRR1 [1]*GRR2 [1:5]- GRR1 [2]*GRR2 [5+1:5])*(mobility2g [1 ,1:5]*

mobility3g [1:5 ,1]+ mobility2g [2 ,1:5]*mobility3g [5+1:5 ,1])/2)

151 kita.mobi.eff.gf <- sum((GRR1 [1]*GRR2 [1:5]+ GRR1 [2]*GRR2 [5+1:5])/2*(mobility2g [1 ,1:5]*

mobility3g [1:5,1]- mobility2g [2 ,1:5]*mobility3g [5+1:5 ,1]))

152
153 # Das Gupta SRE decomposition of TSRE.gf

154 r1 <-GRR1 [1]; r1prime <- GRR1 [2]

155 r2 <- GRR2 [1:5]; r2prime <- GRR2 [5+1:5]

156 p1 <- mobility2g [1 ,1:5]; p1prime <- mobility2g [2 ,1:5]

157 p2 <- mobility3g [1:5 ,1]; p2prime <- mobility3g [5+1:5 ,1]

158
159 das.demo.eff .1.gf <-

160 sum (((p1*r2*p2+p1prime*r2prime*p2prime)/4

161 +(p1*r2*p2prime+p1*r2prime*p2+p1prime*r2*p2+p1prime*r2prime*p2+p1prime*r2*p2prime+p1*

r2prime*p2prime)/12)*(r1-r1prime))

162 das.demo.eff .2.gf <-

163 sum (((p1*r1*p2+p1prime*r1prime*p2prime)/4

164 +(p1*r1*p2prime+p1*r1prime*p2+p1prime*r1*p2+p1prime*r1prime*p2+p1prime*r1*p2prime+p1*

r1prime*p2prime)/12)*(r2-r2prime))

165 das.mobi.eff .1.gf <-

166 sum (((r1*r2*p2+r1prime*r2prime*p2prime)/4

167 +(r1*r2*p2prime+r1*r2prime*p2+r1prime*r2*p2+r1prime*r2prime*p2+r1prime*r2*p2prime+r1*

r2prime*p2prime)/12)*(p1-p1prime))

168 das.mobi.eff .2.gf <-

169 sum (((r1*r2*p1+r1prime*r2prime*p1prime)/4

170 +(r1*r2*p1prime+r1*r2prime*p1+r1prime*r2*p1+r1prime*r2prime*p1+r1prime*r2*p1prime+r1*

r2prime*p1prime)/12)*(p2-p2prime))

171
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172 # Table 5 Long -term SRE (we assume mobility is Markovian)

173
174 C <- diag(GRR1) %*% mobility2g

175
176 G1.1 <- G0.1 %*% C

177 G2.1 <- G1.1 %*% C

178 G5.1 <- G0.1 %*% (C %^% (5))

179 G10.1 <- G0.1 %*% (C %^% (10))

180
181 G1.2 <- G0.2 %*% C

182 G2.2 <- G1.2 %*% C

183 G5.2 <- G0.2 %*% (C %^% (5))

184 G10.2 <- G0.2 %*% (C %^% (10))

185
186 eL <- eigen(t(C)) #left eigenvector

187 L <- eL$values
188 V <- eL$vectors
189 G1.1 %*% V %*% solve(t(V)%*%V)

190 G1.2 %*% V %*% solve(t(V)%*%V)

191
192 # Table 6 Two -sex force of attraction , #marriages

193 psid <- read.dta13("psid_mobility.dta", nonint.factors=T) %>% select(c(f_id , m_id, occ , occ_

f, occ_m, sex)) %>% drop_na(occ , occ_f, occ_m)

194
195 child.count <- psid %>% filter(f_id != 0 | m_id != 0) %>% arrange(-f_id, -m_id) %>% group_by

(f_id, m_id , occ_f, occ_m) %>% summarise(child.count=n())

196 summary(m5 <- glm(child.count ~ relevel(as.factor(occ_f), ref = "1")+relevel(as.factor(occ_m

), ref = "1"), family="poisson", data=child.count))

197 intercept <- coefficients(m5)[1]

198 f_coef <- c(0, coefficients(m5)[2:5])

199 m_coef <- c(0, coefficients(m5)[6:9])

200
201 GRR.son <- GRR.daughter <- exp(intercept) * (exp(f_coef) %x% exp(m_coef))

202
203 mobility.samesex.son <- with(filter(psid , sex ==1), prop.table(table(occ_f, occ), 1))

204 mobility.samesex.daughter <- with(filter(psid , sex ==2), prop.table(table(occ_m, occ), 1))

205
206 mobility.samesex.son <- matrix(rep(mobility.samesex.son ,each =5), ncol =5)

207 mobility.samesex.daughter <- matrix(rep(t(mobility.samesex.daughter) ,5) , ncol=5, byrow=TRUE

)

208
209 mobility .2sex.son <- with(filter(psid , sex ==1), ftable(prop.table(table(occ_f, occ_m, occ),

c(1,2))))

210 mobility .2sex.daughter <- with(filter(psid , sex ==2), ftable(prop.table(table(occ_f, occ_m,

occ), c(1,2))))

211
212 mobility.perfect <- diag(rep(1, 5))

213 mobility.perfect.son <- matrix(rep(mobility.perfect ,each =5), ncol =5)

214 mobility.perfect.daughter <- matrix(rep(t(mobility.perfect) ,5) , ncol=5, byrow=TRUE)

215
216 N.male.0 <- apply(with(psid , table(occ_f, occ_m)), 1, sum)

217 N.female .0 <- apply(with(psid , table(occ_f, occ_m)), 2, sum)

218
219 mu.0 <- with(psid , table(occ_f, occ_m))

220 alpha <- matrix(rep(0, 25), 5, 5)

221 for (i in 1:5) for (j in 1:5) alpha[i,j] <- mu.0[i,j]*(N.male .0[i]+N.female .0[j])/(N.male .0[

i]*N.female .0[j])

222
223 random .0 <- matrix(rep(0,25), 5, 5)

224 for (i in 1:5) for (j in 1:5) random .0[i,j] <- N.male .0[i]*N.female .0[j]/sum(N.male .0)

225
226 endogamous .0 <- diag(pmin(N.male.0, N.female .0))

227
228 # Table 7 Two -sex SRE

229
230 mobility.list.son <- list(mobility.samesex.son , mobility .2sex.son , mobility.perfect.son)
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231 mobility.list.daughter <- list(mobility.samesex.daughter , mobility .2sex.daughter , mobility.

perfect.daughter)

232
233 mating.list <- list(random.0, endogamous .0, mu.0)

234
235 TSRE.ratio <- rep(0,9)

236 TSRE.diff <- rep(0,9)

237
238 count = 1

239 for (x in 1:3) {

240 for (y in 1:3) {

241
242 new.mobility.son <- matrix(0, 25, 125)

243 new.mobility.daughter <- matrix(0, 25, 125)

244
245 for (i in 1:25) {

246 new.mobility.son[i, ((i-1)*5+1):(i*5)] <- mobility.list.son[[y]][i,]

247 new.mobility.daughter[i, ((i-1)*5+1):(i*5)] <- mobility.list.daughter [[y]][i,]

248 }

249
250 G1.son <- t((as.vector(t(mating.list[[x]]))* GRR.son)) %*% new.mobility.son

251 G1.daughter <- t((as.vector(t(mating.list[[x]]))* GRR.daughter)) %*% new.mobility.

daughter

252
253 TSRE.ratio[count] <- (sum(G1.son[,1]+G1.daughter [,1])/(N.male .0[1]+N.female .0[1])/2)

/(sum(G1.son[,((7-1)*5+1)]+G1.daughter [,((7-1)*5+1)])/(N.male .0[2]+N.female

.0[2])/2)

254 TSRE.diff[count] <- (sum(G1.son[,1]+G1.daughter [,1])/(N.male .0[1]+N.female .0[1])/2)

-(sum(G1.son[,((7-1)*5+1)]+G1.daughter [,((7-1)*5+1)])/(N.male .0[2]+N.female

.0[2])/2)

255
256 count <- count + 1

257 }

258 }

259 }
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