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Abstract 

Accurate and timely data on the population of local areas is vital for policy and decision 

making and for monitoring progress towards development goals. Yet in many places, 

population data are out of date and a complete population census is difficult to complete. This 

work addresses the challenge of producing accurate, high spatial resolution population 

estimates in the absence of a full census. We develop a marked spatial point process model to 

jointly model the density of building locations and population per building from samples of 

georeferenced households. We use a Bayesian framework and make predictions of the 

population with uncertainty at a 1 km grid cell resolution. We apply our model to a simulated 

georeferenced census which enables us to test different data sampling scenarios and evaluate 

predictions against a known population. The initial results suggest that point process models 

with a shared spatial effect have the potential to support population mapping and estimation; 

however more work is needed to investigate the sensitivity of the model. Ongoing work is 

also extending the basic joint model form to include geospatial ancillary data as covariates to 

improve the predictive performance. Further development of spatial point process models and 

related statistical techniques can open up opportunities to make fuller use of a wider range of 

datasets to study population distributions and to make accurate predictions of the population. 

 

1. Introduction 

Accurate and up-to-date information on the population and sociodemographic characteristics 

in local areas is vital for planning, carrying out, and evaluating health and development 

projects. Population data form the “denominator” used to calculate rates of disease, 

populations at risk, and many of the indicators for the Sustainable Development Goals 

(SDGs). In order to meet the SDG targets of leaving no one behind, more disaggregated 

datasets are required (Hosseinpoor, Bergen, & Magar, 2015), including subnational 

population estimates (Tatem, 2014). National censuses along with civil registration and vital 

records systems are fundamental sources of local population data, yet these data sources often 

remain tied to administrative unit boundaries and the finest spatial scale data are not made 

available due to privacy concerns. In order to address the need for more local-scale 

population data, geographers, spatial demographers, and other researchers have explored 

disaggregation techniques. These methods generally use geographic information system 

(GIS) techniques to allocate population to smaller area units or regularly sized grid squares. 

Well-known examples of gridded population datasets include WorldPop1, LandScan2, and 

                                                           
1 https://www.worldpop.org/ 
2 https://landscan.ornl.gov/ 
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Gridded Population of the World3. For a recent review and comparison of gridded population 

datasets see Leyk et al. (2019). 

In many places where population data are most needed for development aims, a census is too 

outdated to be reliably projected or a new census cannot be completed due to inaccessible 

areas, finances, and other challenges. For example, Afghanistan has not completed a census 

since 1979 and the Demographic Republic of the Congo’s last census was in 1984. 

Disaggregation techniques to produce gridded population datasets rely on a census count or 

projection as input and therefore have limited accuracy in these situations. In the absence of a 

complete national census there have been several attempts recently to produce model-based 

population estimates using samples of observed population data (Weber et al., 2018). 

Wardrop et al. (2018) describe their approaches as “bottom-up” methods to population 

estimation. They use population counts within defined small areas which are statistically 

modelled with geospatial data, such as derived from satellites, to predict population in 

unobserved areas.  

These population models show potential but they face several challenges. First, using 

aggregate population samples is often a necessary simplification for the statistical model or a 

limitation of data collection or processing, but this step obscures potentially important 

information on where households are located and how they are situated. Variations in 

settlement patterns can be indicative of neighbourhood types (Jochem, Bird, & Tatem, 2018) 

and can be related to differences in population density (Weber et al., 2018) or demographic 

rates (Benza, Weeks, Stow, López-Carr, & Clarke, 2017). Second, these models have so far 

relied heavily on having maps of settled or built-up areas in order to predict the number of 

inhabitants.  

The present work addresses the challenge of accurate estimation and high-resolution mapping 

of population using bottom-up approaches in the absence of a full census, but in contrast to 

other models based on areal unit population counts, we develop a method for using 

georeferenced household-level data. Advances in GPS technology and a push for collecting 

georeferenced data during surveys and censuses are making spatially-explicit datasets more 

common. We develop a marked spatial point process model that jointly estimates the density 

of settlement locations along with household size using a shared spatial effect. Our approach 

focuses on using limited samples of population data and making predictions on high spatial 

resolution grids for unobserved areas. Here we demonstrate our method in a simulated census 

dataset that allows for a full evaluation of the predictions, but we will expand these analyses 

to real-world data where available. 

 

2. Methods 

2.1 Data 

The data used are a synthetic, georeferenced census for the Oshikoto region of northern 

Namibia (Figure 1). Oshikoto is a primarily rural region with a mix of sparse settlements in 

the south and more densely populated in the western area. For these analyses we aggregate 

the number of household members to point locations of dwellings. Some households with the 

                                                           
3 https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 
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same spatial location (e.g. apartment buildings) are combined into a total count of people per 

building. A large area in the southwestern Oshikoto is a national park and we exclude this 

mostly uninhabited area for computational efficiency. The final dataset includes 36725 

household locations with 178364 total people (people per household: Mean=4.9, SD=3.5).   

The synthetic population data were produced using a combination of census microdata, 

household surveys, and digitised structure locations in order to produce a simulated point-

level dataset with realistic distributions of characteristics. The methods and datasets are 

described in detail and made openly available in Thomson, Kools, and Jochem (2018). By 

using a synthetic dataset we are able evaluate the predictive performance of our models 

against a known, complete population.  

2.2 Sampling 

One application area of interest for the model developed here is to estimate and map 

populations when a census is geographically incomplete or to create intercensal estimates at a 

high spatial resolution from sparsely sampled data. Therefore we design our simulation study 

to only partially observe the population within Oshikoto while making predictions and 

evaluating the results for the entire study area. We present preliminary results from two 

simple data scenarios. The first scenario randomly samples 40 locations within Oshikoto. 

These points are buffered a random radius of 10 to 12 km, and any intersecting circles are 

merged to create the observation areas. The second sampling test uses a single, large 

observation area centred over the southern part of Oshikoto. The two sample designs are 

shown in Figure 1 and are referred to throughout as design “A” and “B” respectively. Data 

from the first design (A) might arise in the context of household surveys or vaccination 

campaigns which record georeferenced information about a household to track fieldwork. 

These unconventional data could be used to support population models, but are currently not 

utilised. The second sampling design (B) represents the scenario of a geographically 

incomplete census where an area was inaccessible to enumerators, but a full population 

estimate is needed. 

 

Figure 1: The study area of Oshikoto, Namibia. The simulated population is shown gridded to a 1km spatial resolution (left). 

Samples of household locations were taken in two forms for analysis: from patches randomly sampled across the area 

(design "A," shown middle) or from a concentrated area in the south (design “B,” shown right). The sample design figures 

include point locations of observed households. 

2.3 Marked spatial point process model 

In conceptual terms, the total population in a given location is related to the number of 

households in an area and the number of people in each household. In places with more 
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dwellings per area we might expect more people, but a higher density of dwellings may also 

suggest an urban area with different family structures and smaller average household sizes, 

for example. By modelling how the density of house locations varies in space jointly with the 

variation in population size we are able to include such a relationship. Moreover, the joint 

model allows us to estimate the population without complete observations of all households 

or a complete map of settlement locations in the study area. In this work, the spatial patterns 

of the residential buildings in the study are represented as a spatial point process. Spatial 

point process methods have been discussed in depth previously (Illian & Burslem, 2017; 

Illian, Sørbye, & Rue, 2012; Møller, Syversveen, & Waagepetersen, 1998). Briefly, a spatial 

point process describes the random patterns of observed events in space, the locations of 

which depend on underlying spatial processes. In the case of housing, these may relate to 

human-environment interactions and political economic factors that influence where people 

settle. The number of points within some area, 𝐴, is a random variable modelled by an 

intensity function, 𝜆(𝑠), such that 𝑁(𝐴) = ∫ 𝜆(𝑠) 𝑑𝑠
.

𝐴
. A relevant model for these counts is a 

Poisson process with an intensity function that allows for different spatial patterns and does 

not assume complete spatial randomness. We use the commonly applied technique of a log-

Gaussian Cox process (LGCP)(Møller et al., 1998). In a LGCP the intensity is itself 

stochastic and is allowed to vary over space, 𝜆(𝑠), 𝑠 ∈ 𝑆. The log intensity can then be 

modelled with a Gaussian linear predictor that can be easily extended to include covariates 

and other effects such as a spatially structured random field. 

While the LGCP is used to model the point patterns, each location contains an additional 

observed quantity, 𝑣(𝑠), knowns as the “marks” which in our study is the population total. 

The marks in our case are always positive values greater than zero (i.e. no abandoned houses 

are observed) and are assumed to follow a lognormal distribution. The two components have 

separate likelihoods but are modelled jointly as seen in the following. For the points, the 

intensity of the LGCP is modelled as: 

𝑙𝑜𝑔{𝜆(𝑠)} = 𝛼01 + ∑𝛽𝑖1𝑧𝑖(𝑠) +𝑊𝑠, 

and the marks as: 

𝜈(𝑠) = 𝛼02 + ∑𝛽𝑗2𝑧𝑗(𝑠) + 𝛽𝑠𝑊𝑠, 𝑠𝜖𝑆 

In this format, 𝛼01 and 𝛼02 are intercepts, 𝛽𝑖1 and 𝛽𝑗2 are model parameters to be estimated 

for any covariates, 𝑧𝑖 and 𝑧𝑗 respectively. 𝑊𝑠 is a latent, zero-mean Gaussian Markov field 

with Matérn covariance structure. This spatial field is shared between the two model 

components, setting up the possibility of dependence between the point pattern and marks. 

Because the marks and points are on different response scales, the spatial field for the marks 

is scaled by the estimated parameter 𝛽𝑠. 

The spatial effect, 𝑊𝑠, 𝑠𝜖𝑆, deserves more attention. While past point process models use a 

regular grid (or lattice) structure to aggregate and model the counts, Simpson, Illian, 

Lindgren, Sørbye, and Rue (2016) demonstrated defining the spatial effect in continuous 

space which makes use of the exact point locations. To model a spatial effect in continuous 

space we use the spatial partial differential equation (SPDE) approach (Lindgren, Rue, & 

Lindström, 2011) to approximate a Gaussian field (GF) with Mátern covariance structure. 

The SPDE approach uses a set of basis functions on a triangular mesh to represent a GF as a 
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Gaussian Markov random field (GMRF) which offers flexibility and computational 

advantages. 

We implemented our marked spatial point process model in a Bayesian framework using the 

integrated nested Laplace approximation (INLA) approach implemented in R-INLA (Rue, 

Martino, & Chopin, 2009) and with the R package inlabru (Bachl, Lindgren, Borchers, Illian, 

& Freckleton, 2019). Following Fuglstad, Simpson, Lindgren, and Rue (2018) we constructed 

a penalised complexity prior for the range (𝜌) and standard deviation (𝜎) of the spatial field. 

This method specifies the hyperparameters such that 𝑃(𝜌 < 𝜌0) = 𝛼1 and 𝑃(𝜎 > 𝜎0) = 𝛼2. 

We used 𝜌0 = 100, 𝜎0 = 5, 𝛼1 = 0.5, 𝛼2 = 0.5, and we assigned Gaussian prior 

distributions with mean=0 and precision=1E-3 for fixed effects.  

 

3. Preliminary results 

For this preliminary study we present results from models which include intercepts and a 

spatial field but not covariates. The main outcome of interest of our model is the predicted 

population for both the total study region and at local scales. To make spatial predictions we 

constructed a regular grid with 1km x 1km grid cells covering the study area. The predicted 

population in each location of the grid is estimated by sampling from the posterior of the joint 

model. We express the predicted population as the mean of the posterior samples and the 

uncertainty around that prediction as the 95% confidence intervals. To evaluate the 

predictions at the grid cell level we convert the point locations and population of the synthetic 

data to a grid with matching 1km resolution. 

Sample design A resulted in observations of 12347 locations (approximately 34% of all 

locations) totalling 59777 people in 16 areas across the study area (Figure 1). The spatial 

range for the model using data from design A was estimated to be 73.7 km (95% CI: 50.8 to 

110.1) with a standard deviation of 2.03 (95% CI: 1.5 to 2.9). The results of the predicted 

population grid are shown in Figure 2 along with the upper and lower bounds of the 

confidence interval. The total population was predicted to be 182122 (95% CI: 154436 to 

242798) which is slightly higher than the true population of 178364 people. A cell-level 

comparison of the true population and mean prediction is shown in Figure 4 showing areas of 

both over- and under-prediction. 

Sample design B covered a single large area in the southern portion of Oshikoto containing 

7270 point locations (approximately 20% of the locations) and totalling 28809 people (Figure 

1). The spatial range for the model using data from design B was estimated to be 20.9 km 

(95% CI: 15.5 to 28.0) with a standard deviation of 1.27 (95% CI: 1.07 to 1.51). The results 

of the predicted population grid are shown in Figure 3 along with the upper and lower bounds 

of the confidence interval. The total population was predicted to be 43982 (95% CI: 36533 to 

54330). A cell-level comparison of the true population and mean prediction is shown in 

Figure 4 showing a large area in the west of the study area, far from the sample domain that 

was substantially underpredicted. 
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Figure 2: Predicted population in 1km resolution grids from data scenario A. The mean predicted population (left) along 

with the lower bound (middle) and upper bound (right) of the 95% confidence interval. 

 

Figure 3: Predicted population in 1km resolution grids from data scenario B. The mean predicted population (left) along 

with the lower bound (middle) and upper bound (right) of the 95% confidence interval. 

 

Figure 4: Comparison between the predicted and true populations at the 1km cell level. The difference in mean predicted 

population and true population are shown for scenario A (left) and scenario B (right). Positive values indicate an 

overprediction while negative values are an underprediction. 

 

4. Preliminary conclusions 



Draft: Please do not distribute. 

7 
 

Marked spatial point process models have been applied most commonly in ecology to study 

the abundance of wildlife or environmental resources. Spatial demographers and population 

geographers have not commonly used these models, likely owing to limited availability of 

georeferenced point-level data. However, one notable exception in this area is work by 

(Pereira, Turkman, Correia, & Rue, 2019) who used a marked point process model to 

estimate the unemployed population in Portugal from georeferenced household surveys. We 

have demonstrated preliminary results from a joint spatial model of settlement point pattern 

and population. We applied our model to samples of building-level data from a synthetic 

census population which allowed us to evaluate the predicted population for the total study 

area and at the local scale (aggregated within 1km grid cells).  

The model was efficient to fit using INLA and SPDE methods, and the result show promise 

despite using only a sample of the location data and given that no covariate data were used in 

fitting. The model fit with data observed from across the study region (design A) performed 

best and correctly predicted closely the total population of the study region. At the grid cell 

level it tended to underestimate the highest population areas while slightly overestimating 

primarily in the western regions (Figure 4). This result suggests the model is oversmoothing 

and not predicting very small scale variation population. When data were sampled from only 

one part of the study region (design B), the result was a significant underprediction of the 

total population in the region. We note that the sample came from the southern area which 

has a lower population density, thus biasing the sample. In the absence of other ancillary data 

to assist the model predictions, the poor predictive performance was unsurprising for sample 

B. 

Overall our spatial modelling approach provides a flexible framework for modelling 

population distribution and making predictions with uncertainty. It is clear from these initial 

results that future work should seek to refine the model of household size and to incorporate 

ancillary data as covariates to help explain the variation in building locations and thus 

improve predictions. We also plan to further explore the sensitivity of sample design and the 

effect on the accuracy of the predictions. Further development of spatial point process models 

and related statistical techniques can open up opportunities to make fuller use of a wider 

range of datasets to study population distributions and to make more accurate predictions of 

the population in local areas.  
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