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Abstract

Marriage is frequently preceded by a period of cohabitation. The transition rate from

cohabitation to marriage can be considered over two time scales, the age of the individual

(age-specific rates) or the duration of the cohabitation. Traditional approaches choose one

time scale as the dominant one and model the other time scale as a, possibly time-varying,

covariate. We propose an approach to model a hazard jointly over two time dimensions.

The model assumes a smooth bivariate hazard function, and the function is estimated by

two-dimensional P -splines. We use data from the German Family Panel (pairfam), and we

demonstrate that considering the two time scales jointly provides additional insights about

the transition from cohabitation to marriage.
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1 Introduction

Premarital cohabitation has become a common form of living arrangement and many individ-

uals view cohabitation as an alternative to marriage, however, the latter is still an important

institution in people’s lives. Consequently, many couples will eventually marry after a period of

cohabitation.

When modelling transitions from one state to another in the life course, hazard models are the

most common approach. Age-specific transition rates are the most prominent choice, however,

other time dimensions, such as the duration since entry in the current state, are also of interest.

This also applies to the transition from cohabitation to marriage. Age certainly has a major

role in the transition from cohabitation to marriage, however, previous research has also pointed

out the important role of duration of the cohabitation in triggering the transition to marriage

(Di Giulio et al., 2019; Hiekel et al., 2015). It is likely that the two time dimensions will interact

with each other and that the hazard of marrying is determined by both time scales.

In this paper we will examine the hazard of moving from cohabitation to marriage along two

time scales, age and duration of cohabiting, jointly. Rather than choosing one dominant time

scale and incorporating the other time dimension as a (time-varying) covariate we consider the

hazard as a smooth bivariate function over the two time scales. This allows a flexible interplay

between the two time dimensions.

To demonstrate the approach we will analyse data from the German Family Panel (pairfam).

Up to 85% of marriages, among West German couples, started with a cohabitation (Hiekel and

Fulda, 2018). Married couples still are privileged over non-married couples, by the provision of

social benefits, for example through more favourable taxation of married couples (Baizán et al.,

2004). However, attitudes towards marriage differ significantly between West and East Germany,

with a higher proportion of people cohabiting without marrying in East Germany (Hiekel et al.,

2015) We therefore expect that the hazard of making the transition from cohabitation to marriage

will assume different shapes in the West German and East German subpopulation.

The rest of this paper is organized as follows. First, we describe the model for the smooth two-

dimensional hazard function and how it can be estimated by bivariate P -splines. A description of

the data and some descriptive results for the study sample follows. We will then show the main

results of our two-way model. Finally, we will discuss our analysis and the main findings and

compare them with previous research on the same topic. Conclusions and outlook will follow.

2 Smooth bivariate hazard model

2.1 Univariate hazard smoothing with P -splines

To introduce notation and the P -spline approach of estimating smooth hazards we first exem-

plify the method in a one-dimensional setting. If X denotes the (continuous) random variable

describing the time to the event of interest, then the hazard of X is

λ(x) = lim
∆s↓0

1

∆s
P (x < X ≤ x+ ∆s |X > x) .

If the hazard λ(x) is piecewise-constant, then the estimation reduces to common occurrence-

exposure rates. The time axis is divided into consecutive intervals Ik = (τk−1, τk] with hazard
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levels λk, and maximum likelihood estimation reduces to estimating constant hazards over each

of the intervals Ik

λ̂k =
No. of events observed during Ik

Total exposure time observed during Ik
=:

nk
rk

.

This is equivalent to Poisson regression for Nk ∼ Poi(µk) and expected values µk = E(Nk) =

rk λk (Holford, 1980). The finer the intervals Ik the more flexibly the hazard λ(x) can be

modelled, however, this flexibility comes at the price of increased variability and erratic behaviour

in regions where few individuals are observed.

A standard solution to this problem is to require that the hazard λ(x) is a smooth function.

One expresses (the log of) this smooth function as a linear combination of suitable basis functions

whose coefficients are restricted by a roughness penalty. This is the idea underlying P -splines

smoothing (Eilers and Marx, 1996).

The time axis is split into a large number K of (rather) short bins, commonly of equal length

(with midpoints ck). The basis functions are a set of M equally spaced B-splines of degree p,

and the log-hazard lnλ(x) is expressed as a linear combination of these B-splines

lnλ(x) =

M∑
m=1

Bm(x)αm .

The coefficients αm in the linear combination are restrained by a difference penalty (of order d)

that guarantees that neighbouring coefficients will not differ strongly and hence smoothness of

the resulting estimated log-hazard is implied (Eilers, 1998).

For the Poisson regression approach this leads to the following specification: Let n = (n1, . . . , nK)T

and r = (r1, . . . , rK)T be the vector of observed number of events and total time at risk in the

K bins, respectively, so that µk = rk λk. We denote ηk = lnλk so that µk = rk e
ηk .

For a chosen B-splines basis (degree p and number of basis functions M) the K ×M matrix

of regressors B is given by the elements bkm = Bm(ck), which is the mth B-spline evaluated in

the midpoint ck of the kth time interval Ik. Therewith we can express

ηk = lnλk = lnλ(ck) =

M∑
m=1

Bm(ck)αm =

M∑
m=1

bkmαm.

The m coefficients αm have to be estimated to obtain the (log-)hazard. The Poisson log-likelihood

for the K counts is

`(α) =

K∑
k=1

nkηk −
K∑
k=1

rk exp{ηk}, (1)

leading to the score equations

BT (n− r ∗ eη) = 0 ,

which are solved by iteratively weighted least-squares (McCullagh and Nelder, 1989). The system

BTM̃Bα = BT(n− µ̃+ M̃Bα̃) (2)

is solved repeatedly for α until convergence. Here M = diag(µ) and the tilde indicates the

current value in the iteration.
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To incorporate the smoothness assumption the coefficients α are penalized by a difference

penalty αTDT
dDdα = αTPα, where Dd is a matrix that builds differences of order d of the

coefficients. The penalty becomes large if neighbouring coefficients differ strongly. The Poisson

log-likelihood (1) is supplemented by this penalty term, with a smoothing parameter ρ added to

tune the strength of the penalty, leading to the penalized log-likelihood

`P (α; ρ) =

(
K∑
k=1

nkηk −
K∑
k=1

rk exp{ηk}

)
− ραTPα . (3)

The system (2) changes to

(BTM̃B + ρP )α = BT(n− µ̃+ M̃Bα̃) . (4)

The optimal value of the smoothing parameter ρ is chosen by optimizing a criterion that balances

fidelity to the data and model complexity, such as AIC or BIC. The model is fitted for a sequence

of ρ-values, equally spaced over log10 ρ, and the model with the minimal AIC (or BIC) is selected

as optimal.

2.2 Hazards with two time scales

Now we consider two time scales, which we call x1 and x2, simultaneously. For simplicity of

presentation we assume that time is measured in the same unit for both axes so that an increment

of ∆s in x1 corresponds to the same increment in x2. In this way individuals move in a Lexis

diagram along diagonal lines with slope 1 (Keiding, 1990).

In our application x1 corresponds to the age of the individual (centered so that x1 = 0

corresponds to age 15) and x2 is the length of cohabitation. When individuals start cohabiting

they are in a point (x1, x2) = (x
(0)
1 , 0), where x

(0)
1 is the age-at-entry into cohabitation, and

from that point onward they will move along a diagonal line which represents their ‘cohabitation

history’. The line will terminate at (x1, x2) = (x
(0)
1 +s, s) either with a marriage (event) or when

the observation is censored (drop-out or no marriage before end of observation period).

The hazard of the event of interest for an individual at point (x1, x2) is

λ(x1, x2) = lim
∆s↓0

1

∆s
P (x1 < X1 ≤ x1 + ∆s, x2 < X2 ≤ x2 + ∆ |X1 > x1, X2 > x2) , (5)

where X1 and X2 denote the corresponding random variables of time to event on the two time

scales.

Smoothing of bivariate hazards can be achieved by extending the approach described in

Section 2.1 to two dimensions as proposed in Currie et al. (2004). The Lexis plane is divided

in a tessellation of squares (most common choice, but rectangles would also work) and for each

square the number of events njk and the total exposure time rjk is determined from the individual

observations.

If one time axis is age and the other is duration since entry into the current state (in our

example: cohabitation), then the possible combinations of x1 and x2 are restricted to the positive

half-plane where x2 < x1 (one cannot be cohabiting for longer than being alive or, as we consider

here, alive after age 15). To overcome this restricted domain, we transform the points (x1, x2)
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into new points (y1, y2) by (
y1

y2

)
=

(
x1 − x2

x2

)
=

(
1 −1

0 1

)(
x1

x2

)
. (6)

The time scale y1 corresponds to the age-at-entry into cohabitation and y2 is the duration as

before. In this system of time scales individuals move along vertical lines in their ‘cohabitation

history’. By redefining the time scales in this way, points (y1, y2) can be observed, in principle,

in the full positive plane.

The (y1, y2)-plane is divided into small squares (which correspond to parallelograms in the

(x1, x2) plane), and the event counts njk and total exposure times rjk are calculated.

A bi-dimensional B-spline basis is obtained as a tensor product of the univariate B-spline

bases constructed over the two time dimensions, that is

B = B2 ⊗B1,

where 2 indicates the duration axis y2, and 1 indicates the age-at-entry axis y1. This B-spline

basis is then used as regressor matrix in Poisson regression. Correspondingly, there is now a

matrix A = (αlm) of coefficients.

The penalty matrix consists now of two terms, one for the row coefficients and one for the

columns. The penalty matrix is

P = ρ1(IK2
⊗DT

1 D1) + ρ2(IK1
⊗DT

2 D2). (7)

Here, IK1
and IK2

are identity matrices of the same dimensions as the number of intervals in

the age-at-entry direction (K1) and duration direction (K2), respectively. The matrices D1

and D2 are difference matrices referring to the age-at-entry and duration (we leave out the

difference order here for simplicity). Finally, ρ1 and ρ2 are the smoothing parameters for the

two dimensions, chosen over a bivariate grid of values by minimizing the AIC of the model. The

smoothing parameters can be different to allow different amount of smoothing in the row and

column direction, if the data suggest different smoothness of the bivariate hazard in the two

directions.

The estimated hazard surface over the (y1, y2) plane can then be back-transformed and plotted

for the original (x1, x2) time axes. Details of this approach are presented for density estimation

in Carollo and Gampe (2019).

3 Data

3.1 The German Family Panel

We use data from the first ten waves of the German Family Panel (pairfam), release 10.0 (Brüderl

et al., 2019). A detailed description of the study can be found in Huinink et al. (2011).

The Panel Analysis of Intimate Relationships and Family Dynamics (PAIRFAM) is a longitu-

dinal panel survey providing rich data on the formation and development of intimate relationships

and families. The panel started with about 12,000 randomly selected individuals (anchors) of

three different cohorts (1991-1993, 1981-1983, and 1971-1973). The first wave of interviews was

conducted is 2008. In 2009, about 1,500 individuals living in East Germany were sampled as
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part of the panel DemoDiff, which was initiated following the design of pairfam. Beginning with

wave 5, the two studies have been integrated and they are now run in parallel.

For this analysis we used the generated dataset biopart which provides both retrospective

and prospective information on individuals’ relationships histories from age 14, including cohab-

itations and marriages, on a monthly basis. Details of the generated dataset, as well as of the

study design can be found in the Data Manual (Brüderl et al., 2019). All variables selected for

this analysis come from the dataset biopart, except for the information about residence at the

time of cohabitation, which is extracted from the waves’ specific questionnaires.

We included in our sample all individuals who have experienced at least one cohabitation

with a partner of the opposite sex. Same-sex couples are excluded from the analyses because

regulations regarding same-sex marriages have changed during the period of observations. We

excluded all cohabitations where one of the partner is younger than 15, as well as marriages below

18 years of age. We considered only first cohabitations and we also excluded cohabitations which

started directly with a marriage, or that followed a previous marriage. We excluded couples in

which either the main individual or the partner dies. Finally, we included only cohabitations for

which it was possible to identify whether the individual lived in East or West Germany at time

when the cohabitation started.

3.2 Descriptives of the sample

We analyze a total of 7850 first cohabitations. Of these, 47.82% ended with a marriage. For

the total of our sample, the mean age at marriage was 27.5 (sd=4.8) and on average individuals

married 3.6 years after they moved in together (sd = 3.2).

Sample N % married age at cohabitation age at marriage duration at marriage

Women West 2973 51.26 23.05 (4.3) 26.52 (4.6) 3.19 (2.9)

Men West 2310 47.27 24.84 (4.6) 28.60 (4.6) 3.17 (2.8)

Women East 1429 46.47 22.23 (4.4) 26.85 (4.9) 4.46 (3.7)

Men East 1138 41.65 24.71 (4.6) 29.40 (4.9) 4.41 (3.9)

Table 1: Descriptive statistics of the analysed sample; mean and standard deviation (in paren-

theses). Age at marriage and duration of cohabitation are calculated based only on events

(marriages).

Table 1 provides some basic information about the composition of the four groups. Marriage

is more common among West German couples than East German couples, and in both regions

more women in the sample marry than men in the sample. Women start cohabiting and marry, on

average, earlier than men. Women living in East Germany are on average one year younger than

their West Germany counterpart when they move together with a partner, while the difference

for men is minor. Finally, couples who eventually marry, do so one year earlier in West Germany

than in East Germany.

Figure 1 depicts the cohabitation histories of the individuals in the four groups, by age and

duration of the cohabitation. Each line represents a cohabitation, which either ended with a
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marriage (red circles), or due to censoring (black dots). Since we are able to identify the date

when the cohabitation started, each line starts at duration x2 = 0.
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Figure 1: Cohabitation histories for the four sub-samples

7



4 Bivariate smoothed hazards

We estimate the smooth hazard for each of the four groups separately, following the procedure

described in Section 2.2. Details of the setup for the P -spline regression are presented in Table 2.

K indicates the number of intervals in each direction, M is the number of B-spline basis functions,

ρ are the smoothing parameters and the subscripts 1 and 2 refer to the age-at-entry and duration

dimensions, respectively. We always used cubic B-splines (degree p = 3) and a second order

difference-penalty. The optimal ρ1 and ρ2 are chosen from a linear grid of values for log10(ρ),

ranging from log10(ρ) = −2 to log10(ρ) = 2 for both rows and columns, as the combination which

minimizes the AIC of the model.

K1 K2 M1 M2 ρ1 ρ2

Women West 31 31 15 15 0.63 2.51

Men West 32 28 15 14 10 3.98

Women East 30 29 15 14 10 3.98

Men East 33 34 16 17 2.51 3.98

Table 2: Specification of the P -spline hazard model and optimal smoothing parameters, sepa-

rately for the four groups.

The estimated smooth hazards for the four samples as shown in Figure 2. The hazard of

marrying after a period of cohabitation is higher among West German couples than among

East German ones. The four hazards show some common features, for example a tendency for

individuals who start a cohabitation in their twenties to marry within 10 years. This tendency

seems to be stronger for men and women living in West Germany than for their East German

counterpart. The hazard for East German men shows a peak at younger ages and longer durations

when compared to the one of West German men. Another common feature of the hazards for

West German men and East German women is a steep increase in the hazard for individuals who

started cohabiting at really young ages but marry after a long cohabitation. Both West German

and East German men who start a cohabitation in their forties tend to marry within a couple

of years. Finally, West German women who start a cohabitation between 30 and 35 years of age

have a higher hazard of marrying in the next couple of years than all the other groups.
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Figure 2: Bidimensional smooth hazard of marrying after a cohabitation by age and duration of the cohabitation
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5 Discussion and Outlook

In this paper we use a new approach to analyse transitions from cohabitation to marriage jointly

over two times scales, age and duration of the cohabitation. This approach allows a more flexible

analysis of the hazard of an event registered over two time scales, without the necessity to prefer

one scale over the other. Therefore, we are able to explore the differences and similarities of the

estimated hazards as a results of the interplay between the two time dimensions.

The estimated surface can subsequently be used to determine the transition rate for a partic-

ular age or age-at-entry or duration by ‘cutting’ through the surface in an appropriate direction.

While we estimated a smooth bivariate surface without further constraints it is of interest to

explore whether a simpler form of interplay between the two time scales, such as a log-additive

formulation, would fit the data equally well but more parsimoniously.

Currently the proposed method is limited to the estimation a bivariate hazard surface without

any additional covariates that can operate on this baseline hazard. We plan to extend the

approach by including covariates in a proportional hazards framework.
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