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Abstract 
Malaria is a vector-borne disease causing an estimated 219 million infections and 435,000 deaths 
annually.  Since 2011, no other region in the world has experienced a larger increase in malaria cases 
than the Amazon. Three factors have driven this malaria rise: strong ENSO events (2011-12, 2016); 
withdrawal of the Global Fund to Fight AIDS, Tuberculosis and Malaria; social unrest in Venezuela; and 
policies conducive to resource extraction, which increases both vector habitat and occupational 
migration associated with malaria transmission.  These realities make malaria control challenging for 
health systems.  Current surveillance and control programs rely solely on weekly case reports and 
respond to outbreaks with incomplete data (case reporting has a 1-4 week lag).  Further, health 
response occurs in political districts, regardless of the strong environmental and demographic factors 
driving malaria risk, and independent of environmental policy.  To address these challenges, we initiated 
the development of a Malaria Early Warning System (MEWS) in collaboration with the Peruvian 
government and support from NASA.  Our MEWS forecasts outbreaks with 95% sensitivity and 75% 
specificity 12 weeks in advance in eco-regions (i.e., defined by demographic and environmental 
characteristics such as population, climate, hydrology, and land cover), and provides estimates of 
malaria incidence in small administrative districts with minimal error. The MEWS also includes agent-
based models to simulate intervention response over short- and long-term time horizons.  Our MEWS is 
the first early warning system capable of accurately forecasting health risks on a time scale that permits 
sufficient planning by the health system.   
 
 
  



EXTENDED ABSTRACT   
Malaria is a vector borne disease causing an estimated 219 million infections and 435,000 deaths 

annually.  Since 2011, no other region in the world has experienced a larger increase in malaria cases than 
the Amazon [1].  Increasing malaria incidence began after the 2011-12 Amazon flood and withdrawal of 
the Global Fund to Fight AIDS, Tuberculosis and Malaria (GF). Cases doubled in Peru and Venezuela in less 
than two years [3, 4]; cases in Colombia 
doubled by 2016 (total of 83,227) and 
increased 5-fold in Ecuador [4]. In 2017, 
more cases of malaria occurred in 
Amazon-basin countries than any other 
year in the past decade (773,503 cases), 
the highest increases in Venezuela, 
Ecuador, Peru, Colombia, and Brazil. 
There is no single underlying cause for 
this increase. Our research in Loreto, 
Peru has demonstrated both positive 
impacts of GF investment and negative 
impacts of withdrawal ([2], Figure 1), 
but there were also strong ENSO  events 
in 2011-12 and 2016, policies expanding 
resource extraction (i.e., logging, 
mining, etc. [5]) and human migration 
[3, 6, 7], all correlated with malaria risk.  

Current Surveillance and Response  
Current monitoring systems in Peru, Brazil, Colombia, and Ecuador rely on weekly case reports 

compiled at each health post (clinic) in each administrative health area (e.g., district, canton, municipio). 
Briefly, when a patient exhibiting malaria symptoms arrives at a clinic, he/she is tested for malaria by 
microscopy and, if positive, receives treatment. Some cases are verified by rapid diagnostic tests (RDTs). 
Health post staff report each malaria case to a local Health Center, which is subsequently reported to the 
regional and national surveillance system. Data transmitted include name, age, sex, national ID, date of 
diagnosis, malaria type, and residence, but additional data reported varies by country. Each week, ministry 
personnel tasked with responding to outbreaks compare the reported cases that week to the historical 
average in that district. If the number of reported cases is >3 standard deviations (SD) above the 6-year 
geometric mean number of cases from the corresponding week, the ministry declares that an outbreak 
has occurred (2SD above the mean is considered high risk and 1SD above is medium risk). When outbreaks 
are officially declared, health ministries (usually) have access to national funds for control, including 
indoor spraying, bednet distribution, and prophylaxis. However, outbreak declarations are usually based 
on cases reported 4 weeks prior as reporting delays result in cases reviewed during the concurrent week, 
on average, are only about 25% complete whereas data from 4 weeks prior are considered 100% up-to-
date (according to CDC-Peru).  This structural limitation implies that malaria control is reactive rather than 
proactive, as outbreaks are observed, not predicted. Although the current surveillance system does not 
provide timely information on malaria risk, the infrastructure permits the development of probabilistic 
predictions of outbreaks and surveillance trends, which is a pillar of future malaria control activities [8]. 

Malaria and Migration  
Human mobility, including permanent residential change and temporary movements (travel, labor, 

schooling, etc.), is an enigma for human health globally. In the Amazon, population mobility has been 
associated with a number of adverse effects, including deforestation, urbanization, vector-borne disease 

 
Figure 1. Incidence of P. falciparum (red) and P. vivax (green) in Loreto, Peru, 
2000-2017. The shaded blue region is the period during which the Global Fund 
invested in malaria control in Loreto. Our study shows the GF averted 194,249 
malaria cases and withdrawal resulted in an excess of 141,523 malaria cases [2] 



risk, and child mortality [9-17]. Rural-rural migration is particularly devastating as increasing population 
density and policies preventing land ownership induces further settlement into forested areas [12, 13, 18, 
19] and has been associated with a phenomenon called frontier malaria [20-24]. Labor migration, which 
is temporary and consists of both long- and short-term migration (i.e., daily to annually), is a strategy to 
diversify risk through cash income and is regularly practiced by rural families. This type of migration is a 
major cause of malaria transmission, yet few studies have quantified the proportion of transmission 
attributable to human movement [25, 26]. For example, a prospective 4-year study by the Amazon ICEMR 
found that 65% and 85% of incident P. vivax and P. falciparum cases, respectively, were people who 
traveled in the past 30 days (Kosek, Pan, Yori, Vinetz, unpublished data), primarily for their occupation. 
Recent work has tested mobile mapping tools to characterize travel duration, destinations and timing of 
malaria in the Amazon [25]. And international (labor) migrants have been identified as important sources 
for malaria reemergence and clustering of cases near borders [27, 28]. Importantly, ABMs developed by 
our team show that labor migration can sustain hypoendemic transmission [29]. 

A key component of labor migration is the destination choice, or more specifically, the location of 
temporary employment. In studies we have conducted in the Peruvian Amazon, the primary forms of 
occupation migration are logging, mining, fishing, oil/gas extraction or exploration, and construction.  The 
majority of these opportunities occur more than one days travel from a person’s home, but in areas 
connected by river and sometimes by roads.  This connectivity often extends beyond the political 
boundaries of a health system catchment area, but can often be connected ecologically via rivers, forest, 
and other eco-zones.  Connecting space to identify biological niches for animals and plants is a common 
approach used in environmental science, but not often used in health applications. 

NASA Early Warning System  
We provide a brief description of our malaria early 

warning system. The system was developed with NASA 
support (Pan, PI). The primary goal was to develop a MEWS 
that accurately detects outbreaks 8-12 weeks in advance and 
that the system “is completed and ‘qualified’ by our 
stakeholder (Peru’s Ministry of Health, MINSA) through testing 
and demonstration in the targeted decision-making activity” 
(NASA refers to this as Application Readiness Level 8, ARL8).  A 
minimum 8-week forecast is required to allow adequate 
response time.  

The MEWS was developed for Loreto, Peru, which consists 
of 53 administrative districts and a population of almost 900K. 
The MEWS has four components (detailed in Approach 
Section): a Land Data Assimilation System (LDAS); EcoRegion 
forecast model; District-level spatial Bayesian forecast; and 
Agent-based models.  Briefly, the LDAS produces average daily 
estimates of surface temperature, precipitation, soil moisture, 
humidity and other hydro-meteorological parameters in 5 KM 
grid cells that are aggregated to districts. The EcoRegion model 
produces forecasts 12 weeks in advance using an Unobserved 
Components Model (UCM) [38-40] in seven predefined areas 
with similar socio-environmental characteristics (determined via Factor Analysis, Figure 2). The spatial 
Bayesian model produces complementary forecasts at the district level.  The ABM fits scenarios of 
migration, climate, and interventions to evaluate malaria sensitivity.    

 
Fig 2. EcoRegions in Loreto, Peru.  EcoRegions 
in Loreto that were identified using Factor Analysis 
on average monthly values of hydro-
meteorological parameters, land cover, and human 
population size between 2000 and 2010. The small 
maps above represent NatureServe data, land 
cover, and 4 LDAS parameters (annual averages).   



Outbreak prediction and location identification occurs in two steps. Since data are not complete in 
real-time, our forecasts begin 4 weeks prior to the current week (Figure 3).  We use the EcoRegion model 
to detect outbreaks up to 12 weeks in advance, which provides greater accuracy as data are aggregated, 
minimizing factors such as spatial spillover, vector ecology range, migration (ecoregions tend to have 
similar occupational labor opportunities), and reporting errors (i.e., residents diagnosed in health posts 
distinct from location of transmission). If the model detects an outbreak, the spatial Bayesian model is 
used to determine which 
district(s) within the EcoRegion 
will experience an outbreak.  The 
Bayesian model provides a 
probabilistic interpretation. 
Ideally, we would like to perform 
the screening at the district level 
itself, but diagnostics (sensitivity 
and specificity) were higher for 
EcoRegions.   

To demonstrate functionality, 
P. vivax forecasts were produced 
for EcoRegions 1 and 3 (see Figure 
2 for locations): EcoRegion 1 
surrounds Iquitos (the largest 
Amazon city in Peru) and is 
characterized by human land use, 
low temperature variation, cooler 
temperatures (compared to other 
areas of Loreto), and less flood-
prone areas; EcoRegion 3 is along the border of Colombia and Brazil, characterized by low human 
population density, less flood prone, high temperature variation, and high precipitation. The UCM for 
EcoRegion 1 includes soil temperature and PAMAFRO interventions (ITN distribution, health system 
strengthening, vector control) as predictors, an autoregressive term, a stochastic trend, and 52-period 
cycle; EcoRegion 3 UCM included water runoff and PAMAFRO interventions as predictors, an 
autoregressive term, a stochastic trend, a 3-week dependent lag, and three cycles with periods 3, 26 and 
53 weeks. The forecast declares an outbreak if the 95% confidence interval of the forecast overlaps the 
outbreak threshold (1SD above the 6-year weekly mean). For example, Figure 3 shows the 12 week 
forecast beginning 4/29/2018, but the 95% CI does not overlap the outbreak threshold for any week.   

Sensitivity (Se), specificity (Se), positive predictive value (PPV) and negative predictive value (NPV) of 
detecting an outbreak was computed for 1-4, 5-8 and 9-12 weeks from the date of the forecast. 2016 was 
used as this was the last year with at least two epidemiological weeks were classified as an outbreak.  The 
assessment consisted of producing a 12-
week forecast beginning 11/8/2015, 
repeating every 4-weeks (equivalent to a 
forecast produced each month).  Each 4-
week forecast block was compared to 
outbreak thresholds in that block. If the 
forecast and observed rates indicated an 
outbreak, we defined this as a successful 
detection.  If not, it was classified as a 
false positive or false negative.  9-12 

 
Fig 3.  Real-time data reporting, forecast periods, and EcoRegion 1 Forecast 
between May-July 2018 in Loreto, Peru.  The top graph represents the assumed 
completeness of data from today (day 0) and 4 weeks prior. The bottom graph is the 
EcoRegion forecast initiated on 4/29/2018: the blue bars are the malaria incidence 
forecast and 95% confidence interval for EcoRegion 1; the red dot is the observed 
malaria during that week; and the black dotted line is the 6 year mean plus 1SD used 
to determine whether an outbreak is expected in the EcoRegion.    

Table 1. 2016 Forecast performance, EcoRegions 1 & 3 (n=13 weeks) 

Forecast weeks TP FN FP TN Se Sp PPV NPV 

E
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-

R
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n

 1
  1-4 3 0 0 10 100% 100% 100% 100% 

 5-8 3 0 1 9 100% 90% 75% 100% 

 9-12 3 0 3 7 100% 70% 50% 100% 

E
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n

 3
  1-4 1 1 1 10 50% 91% 50% 91% 

 5-8 1 1 1 10 50% 91% 50% 91% 

 9-12 2 0 3 8 100% 73% 40% 100% 

TP=True positive; FN=False Negative; FP=False Positive; TN=True Negative  



weeks in advance, the models correctly identified all outbreak weeks in 
each EcoRegion (100% Se); however, Sp was 70% and 73% for EcoRegion 
1 & 3, respectively (Table 1). 

Our district-level MEWS uses a Bayesian time series framework with 
a 1st order autoregressive process, and includes cumulative rainfall from 
the previous 3 months, mean temperature, windspeed, relative 
humidity, soil moisture and temperature, runoff, season, and PAMAFRO 
interventions. We include pairwise interactions between seasons and all 
other covariates to allow environmental and intervention effects to vary 
by season. We also stratify by district, allowing environmental and 
intervention effects to further vary spatially. We evaluated overall 
performance of the district level MEWS by producing 8-week forecasts from 2007-2019 for each 
epidemiological week, computing Se and Sp for detecting outbreaks of P. vivax (Table 2) and the root 
mean square prediction error to assess model fit, which provides confidence that we are accurately 
forecasting the number of cases. The MEWS performs considerably better in EcoRegion 1 than 3, with 
most sensitivities exceeding 0.8 and specificities exceeding 0.70. EcoRegion 3, which borders Colombia 
and Brazil, never achieves 
sensitivities above 0.60 
(Table 2). We hypothesize 
that poor performance is 
related to population 
movement along the 
Peru-Colombia-Brazil 
border. Regardless, there 
is good overall model fit 
with low prediction error 
for Fernado Lores district 
(Figure 4), which had the 
lowest sensitivity of all 
districts, and Ramon 
Castilla, which had the 
highest specificity in 
EcoRegion 3.  

Implications for Disease Control 
Malaria has reemerged in the Amazon and is a major source of morbidity, lost wages, and continued 
strain on health resources. Malaria’s reemergence is coincident with overlapping political, economic, 
demographic, and environmental factors, including withdrawal of international support for control 
(exceptions being government-sponsored research), major ENSO events coupled with land use change, 
neoliberal resource extraction policies, and human migration/mobility (i.e., both internal labor migration 
and international migration, such as from Venezuela).  Creation of an accurate and cost-effective EWS 
for malaria has been identified as a key component of the regional malaria elimination plan.  In 2016, 
member states of the Pan American Health Organization approved the Action Plan for Malaria 
Elimination 2016-2020, a pledge to continue reducing malaria through 2020. On World Malaria Day 
2019, PAHO announced “Municipalities for Zero Malaria”, an initiative to eliminate malaria in areas with 
the highest burden. The ability to accurately forecast malaria is critical to achieving this goal; however, 
no forecasting capability exists in any national malaria surveillance system and Amazon-basin countries 
have an immediate need for such a tool.   

Table 2. Sensitivity & Specificity of 8-
week district forecasts, 2007-2019 

District Se Sp 

Ecoregion 1 

Iquitos 88% 84% 
Fernando Lores 51% 84% 
Punchana 89% 74% 
Belen 79% 70% 
San Juan Bautista    97% 67% 
Jenaro Herrera 94% 98% 

EcoRegion 3 

Ramon Castilla 57% 79% 
Pebas 54% 68% 
Yavari 55% 63% 
San Pablo 60% 76% 

 

 
Figure 4.  Root-mean square prediction error, Fernando Lores and Ramon Castilla 
districts, 2016-2019.  Both districts have low sensitivity to outbreak detection; however, the 
RMSE is relatively low, particularly in Fernando Lores.  As noted in the text, Ramon Castilla is 
along the border with Brazil and the model tends to overestimate cases 


