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Abstract. The Brazilian Amazon and the Brazilian Northeast are the two regions with the high-
est levels of vulnerability to climate change in the country. While the first is characterized by the
largest rainforest in the world and has a very hot and humid climate, the second hosts one of the
largest deserts in the globe. Because of the very low latitudes, these regions are subject to very high
temperatures and are susceptible to many tropical diseases, such as vector-borne (dengue, malaria,
yellow fever), water-borne, and gastrointestinal diseases. These diseases are very sensitive to partic-
ular climate conditions, such as increase in temperature trend and precipitation concentration. This
paper develops a multidimensional index of health vulnerability to climate extremes in Amazonia
and the Brazilian Northeast applying the Alkire-Foster method. Vulnerability was conceptualized
as represented by three components: risk (proxied by 7 extreme indices based on temperature and
precipitation data from the ClimDex project), susceptibility (proxied by socioeconomic and demo-
graphic indicators, combining income, education and young and elderly dependency ratios), and
adaptive capacity (proxied by sanitation and urbanization variables). Once defined, the index was
decomposed by region and levels of climate-sensitive health indicators (infectious and parasitic dis-
ease rates) to understand how dimensions of vulnerability correlates with different levels of disease
prevalent across regions. Results suggest that 28% of Amazonian regions were deprived in a least
25% of the variables used to create the index, against 8% in the Northeast. The level of health
vulnerability varies significantly when homogenous climate zones are taken into account.
Keywords: Extreme Weather, Health Vulnerability, Brazilian Amazonia, Brazilian Northeast,
Multidimensional Index.

1 Introduction

Population vulnerability is a multidimensional concept that depends on the society’s ex-
posure to adverse conditions defined by the context such as climatic and environmental
conditions, sociodemographic and health factors [3, 29]. Vulnerability severity is affected by
the interplay between extreme climate events, sociodemographic susceptibility and adaptive
capacity of the society [4, 34]. In the short and medium-term, the population vulnerability
can be mitigated by public policies such as poverty alleviation, improvements in household
infrastructure and access to adequate healthcare services. Climate risks, on the other hand,
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require long-term public policies that involve multiple strategies and different actors, both
nationally and internationally [40, 33, 10]. They demand structural changes in economic
production and human occupation that are not easy to meet. All these changes involve im-
portant trade-offs insofar as environmentally sustainable production and consumption may
lead to both family and society wealth losses [11, 40, 47].

The most common climate risks, expressed by extreme weather events, are floods, pro-
longed droughts, gusts, tornadoes, heat waves, and cold waves. These events can cause
fatalities, change people’s daily lives, impact the economy, and cause infrastructure damage
[24]. Extreme climate events can also accelerate the development of pathogens and dis-
ease vectors [8, 7, 5]. For example, increasing temperatures may accelerate the life cycle
of parasites (e.g malaria) while precipitation volume may contribute to vector propagation
[2, 30]. Thus, the occurrence of extreme events can directly affect human health by causing
deaths, physical injuries, illness, or mental health problems. In 2009, for instance, 48 deaths
were recorded in the Brazilian Northeast (NEB) due to excessive rainfall and consequent
landslides [25]. It is important to notice that the severity of health impacts due to extreme
climate events depend on the quality of the infrastructure or the degree of adaptive capacity
of each society [44, 41].

The intensity and frequency of climate events can be amplified by the climate changes
that stem either from natural or anthropogenic factors [49, 22, 43]. Climate interactions
with ecosystems, water, biodiversity and changes in land use can lead to environmental
degradation, affecting both availability and quality of food and water [28]. Water shortage
can aggravate the incidence of infectious diseases due to hygiene conditions and access to
drinking water. Empirical evidence has shown that long periods of drought have increased
the number of dengue cases due to inadequate water storage [3, 45]. During the 1980s and
1990s, the NEB was affected by prolonged droughts that intensified the human migratory
flows from rural to urban areas. As a result, the Northeastern major cities witnessed an
increase in visceral leishmaniosis registers [6].

Recently, droughts, floods, cold and heat waves were recorded in different regions of
Brazil, such as the drought that hit the South of Brazil in 2008 [24] and the water crisis due
to the precipitation deficit in So Paulo in 2014 [26]. The Amazon (AMZ) and NEB regions,
in particular, have experienced the most intense and frequent extreme weather events in
the country, with periods of torrential rainfall and severe droughts. These events are often
responsible for endemic diseases, which intensify the vulnerability of their local population
[48].

The AMZ is characterized by a hot and humid climate that is related to meteorological
systems at different scales, modulated by ocean-atmosphere mechanisms. These mechanisms
cause total rainfall to sit above or below the cl imatological average, producing extremely
humid or dry days[39, 38, 43, 9]. In recent years, the region has experienced alternate periods
of heavy rainfall and severe droughts. The 2009, 2011, 2012 and 2014 floods displaced thou-
sands of families, interdicted highways, isolated municipalities and increased the incidence
of climate-sensitive diseases such as leptospirosis, diarrhea, typhoid fever and dermatitis
[23, 23, 25, 27, 51, 46, 16, 15]. The 2005 and 2010 droughts left small riverside communi-
ties without sufficient water, affected their fishing activities and increased the incidence of
diseases, mainly malaria and dengue that accounted for 56% of morbidities in the region
[35, 18, 26].

The NEB, by its turn, is characterized by high climate variability due to physiographic
factors and atmospheric systems of different scales [32, 31]. Among the Brazilian regions, the



NEB presents the lowest water availability particularly in the semiarid areas [25]. It has a
noticeable inter-annual variation of precipitation, alternating extremely dry and extremely
rainy years [21, 13]. Droughts are part of the natural climate variability in the region
and recurrently affect the population, especially the most vulnerable inhabitants in the
semiarid. Constant water shortages affect the agricultural sector, increasing the risks of food
insecurity and worsening the socioeconomic conditions as the region is highly dependent on
the family farming [20, 14, 42]. Between 2012 and 2016, NEB experienced the worst drought
of the last 50 years that affected 1,100 cities. Besides, important economic sectors, such
as agriculture and livestock, suffered significant losses. The depletion of important water
sources has triggered a number of hazardous conditions, including the contamination of the
water sources, which contributed to increase in the incidence of infectious and parasitic
diseases [37]. On the other hand, the the major cities suffered from heavy rainfall episodes.
These events associated with poor infrastructure and unplanned urban growth resulted in
severe flooding with adverse consequences to the population health [17, 36].

The aim of this paper is to estimate a climate extreme vulnerability index (CEVI) for
the AMZ and the NEB taking into account three different dimensions: risk, susceptibility,
and adaptive capacity. In addition, we evaluate the relationship between health and each
CEVI dimension. Population health conditions were proxied by climate-sensitive infectious
and parasitic diseases due to the high incidence of these conditions in both Brazilian re-
gions. For the best of our knowledge, there are only a few studies that evaluate climate,
demographic and health conditions for these regions. Our main findings indicate the high
vulnerability of the NEB and Amazonia due to the high rates of poverty and natural disas-
ters, with important regional differences. Amazonia is more sensitive to adaptive capacity,
while in the NEB risk and suceptibility plays a bigger role in explaining the vulnerability of
its regions. In terms of the sensitivity of the CEVI to disease incidence, we observe that in
both regions the contribution of the risk dimension is higher in areas with higher incidence.
But while suceptibility dimension prevails in NEB in areas of low incidence and the adaptive
capacity takes place where incidence is high, in Amazonia adaptive capacity is always the
major contributor to vulnerability, regarless of incidence level.

2 Data

The object of this study comprises two Brazilian regions: NEB and AMZ. The political-
administrative division follows the Brazilian Institute of Geography and Statistics (IBGE)
definition. IBGE defines 27 and 35 mesoregions in the AMZ and NEB, respectively. The
meteorological data used in this study came from a joint project between the University
of Texas (USA) and the Federal University of Esprito Santo (Brazil) and are available at
https://utexas.box.com /Xavier-etal-IJOC-DATA. The methodology for the extraction of
this database is described by Xavier et al. [50], which provides the following meteorological
variables: precipitation, wind, minimum and maximum temperature, relative humidity and
evapotranspiration. These variables are organized in a regular grid of 0.25o × 0.25o and
cover the entire Brazilian territory. A grid point of precipitation and temperature variables
was selected to represent each of the 62 mesoregions (Figure 1). The daily measurement
comprises a time series from January 1, 1980 to December 31, 2013.

Population health conditions were proxied by climate-sensitive infectious and parasitic
diseases such as diarrhea and gastroenteritis, cholera, malaria, dengue, leptospirosis, leish-
maniosis and arbovirus. This indicator was derived from administrative health records pro-



vided by the Brazilian Hospital Information System. This information refers to in-patient
care received in the Brazilian Public Health Care System (SUS-Sistema Único de Saúde),
which responds for 66% of the total hospitalizations in the country [19]. The health data were
obtained at the mesoregions level of the AMZ and NEB, using the place of residence instead
of place of occurrence as the criterion for data selection. Disease counts are based on a 3-year
average centered in 2010. The population used to calculate the rates of climate-sensitive
diseases as well as the information about demographic, socioeconomic and infrastructure
conditions came from the 2010 Demographic Census conducted by IBGE.

Fig. 1. Grid Points for Meteorological Data and State/Region Boundaries of Study Area

3 Methodology

In order to capture how health correlates with climate and socioeconomic indicators in the
Brazilian Northeast and Amazonia, we develop a multidimensional index of health vulner-
ability to climate extremes (CEVI) applying the Alkire-Foster method [1]. The index was
computed at the mesoregion level for the overall study area and by region (NEB and AMZ,



separately). Then, for each of these areas the index was further computed and decomposed
by levels of infectious disease incidence.

The CEVI (M0) is defined by an interaction of two subindices: a censored (multidi-
mensional) deprivation headcount (H) and a censored deprivation intensity (A). We first
define the dimensions that constitute vulnerability. In this study we use risk, suceptibility
and adaptive capacity as its three main constituents. Then, we elicit the indicators form-
ing each dimension, as shown in Figure 2. To proxy risk, we use 5 temperature extreme
indices and 2 precipitation extreme indices produced by the Climdex Project [12]: 1) TXx
(Monthly maximum value of daily maximum temperature - Co); 2) TNx (Monthly maxi-
mum value of daily minimum temperature - Co); 3) TX90p (Percentage of days when TX
> 90th percentile - warm days); 4) TN90p (Percentage of days when TN > 90th percentile
- warm nights); 5) DTR (Daily temperature range: monthly mean difference between TX
and TN - Co); 6) CDD (Maximum number of consecutive days when rainfall <1 mm - dry
spell); 7) R99p (Annual rainfall that exceeded the 99th percentile in the period from 1980
to 2013 - percentile: extremely wet days in mm). The suceptibility dimension was formed
by the following indices: 1) regions with proportion of elderly above the 5th quintile of the
elderly distribution and below the 1st decile of the average per capita income; 2) regions
with proportion of children above the 5th quintile of the children distribution and below
the 1st decile of the average per capita income; 3) regions with average per capita income
below R$255.00, and 4) regions with the lowest proportion of literate adults (below the 1st
quartile). Finally, the adaptive capacity dimension was proxied by 4 indicators: 1) regions
with the lowest proportion of households with adequate sewage (below the 1st quartile); 2)
regions with the lowest proportion of households with adequate water supply (below the
1st quartile); 3) regions with the lowest proportion of households with gargabe collection
(below the 1st quartile), and 4) regions with the lowest levels of urbanization (below the 1st
quartile). Finally, we assinged weights for each for dimension equally, that is, 1/3. Since the
risk dimension has more indicators, weights vary by indicator whitin dimension, preserving
the dimensional weighting scheme. This weigthing structure is shown in Table 1.

This value represents 1/4 of the Brazilian minimum salary by 2010, the year corresponding of most
of the data collected.



Fig. 2. Dimensions and Indications withing Dimensions used to create the Climate Extreme Vul-
nerability Index - CEVI
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After defining indicators and linking them to dimensions, and after assinging proper
weights, the next step in the CEVI construction is to define the number of indices (or di-
mensions) a mesoregion needs to be simultaneously deprived to be considered as vulnerable.
Following Alkire and Foster [1], we estimate different proportions of indicators in which each
region is classified as deprived in order to analyse where the curve of the adjusted headcount
ratio (M0) stabilizes. We used overall and regional dominance analysis (not shown here)
to define the 25% point as the vulnerability cut-off since it represents the point in which
there is a disturbance in the vulnerability trend among regions. Up to this point adjusted
headcount (H) and the CEVI were dropping fast (between 35% and 50%), and after it the
decrease in deprivation rates reduced.

The second step is the estimation of the breadth of vulnerability experienced by each vul-
nerable region. This step is crucial to adjust the unadjusted CEVI level (H) to its intensity
(A). It represents the share of possible deprivations experienced by a multidimensionally
vulnerable region. The adjusted CEVI (M0) is also called adjusted headcount ratio. It
measures the proportion of regions that are classified as simultaneously deprived on at least
25% of the indicators weighted by its intensity.

3.1 Index Decomposition by Region

If the entire study area, y (of size n) is divided into two subgroups y1 (of size n1) and y2 (of
size n2), then M0 can be decomposed as

M0(y) =
n1

n
∗M0(y1) +

n2

n
∗M0(y2) (1)

The contribution of subgroup i to the overall adjusted CEVI (M0) is:

ni

n
∗
[
M0(yi)

M0(y)

]
, for i = 1, 2 (2)

3.2 Index Decomposition by Dimension or Indicator

If the censored headcount of indicator d is denoted by Hd, then the adjusted CEVI can be
expressed as

M0(y) =
∑
d

(
wd

D

)
∗Hd (3)

where wd is the weight attached to dimension d. If decomposition is to be made by indicator,
just read d is the indicator. The contribution of dimension d to the overall CEVI is(

wd

D

)
∗
[

Hd

M0(y)

]
, for all d (4)

A 45% cut-off point was another break-up point in the curve, but it would produce a very small
number of multidimensional deprived regions (only 6), since the criterion for deprivation would be
to severe.



4 Results

Table 2 presents descriptive measures of all indicators used to create the CEVI. We observe
important differences between unidimensionally (uncensored) deprived and non-deprived
mesoregions, with differences more pronounced in AMZ than in NEB. Deprived regions
have on average higher proportion of warm days and nights, higher daily temperature, dry
spell and extremely wet days compared to the non-deprived regions. Overall, risk indicators
are slightly worse for deprived regions in AMZ than in NEB. In terms of suceptibility, AMZ
has a higher proportion of deprived regions and because it is the youngest region in the
country it has a higher proportion of areas with more children and poor individuals relative
to NEB. The proportion of literate adults is also lower in the deprived areas, especially
in the AMZ. The larger regional differences, however, is observed in the adaptive capacity
dimension, with the AMZ showing the worse levels of overall sanitation conditions, especially
among the deprived areas.
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Table 3 performs the sensitivity analysis of multidimensional vulnerability by varying
cutoff levels. Since we have 15 indicators, our defined our cutoff point, k, as the proportion

of the counting vector, c(i), as k = c(i)∑
i i

, where i stands for indicator. We varied k from

10% to 100% to study the curve formed by H and M0 (our CEVI). As explained in Section
3, with the 25% cut-off point (shown in bold in Table 3), we found that 32.3% of all regions
(23.8% in NEB and 50.0% in AMZ) were vulnerable simultaneously on at least 25% of the
indicators used in CEVI. If we take the deprivation intensity into account, vulnerability
in the region was 14.9%, 10.0% and 25.3% for the overall study region, NEB and AMZ,
respectively. All subsequence analyses use the 25% criterion to establish the lower bound of
simultaneous deprivation for a region to be considered vulnerable.

Table 3. Censored Headcount, Vulnerability Intensity and Intensity Adjusted Multidimentional
Index according to varying Cut-off Levels for the Deprivation Counting Vector

Cut-off Censored Headcount Vulnerability Intensity Multidimensional Index
(%) Sample Northeast North Sample Northeast North Sample Northeast North

10 0.694 0.643 0.800 0.297 0.254 0.368 0.206 0.163 0.294
15 0.516 0.476 0.600 0.359 0.304 0.450 0.185 0.145 0.270
20 0.403 0.333 0.550 0.415 0.365 0.477 0.167 0.122 0.263
25 0.323 0.238 0.500 0.463 0.422 0.505 0.149 0.100 0.253
30 0.290 0.214 0.450 0.484 0.439 0.530 0.141 0.094 0.238
35 0.258 0.190 0.400 0.504 0.452 0.556 0.130 0.086 0.223
40 0.210 0.143 0.350 0.538 0.483 0.586 0.113 0.069 0.205
45 0.145 0.048 0.350 0.598 0.642 0.586 0.087 0.031 0.205
50 0.113 0.048 0.250 0.640 0.642 0.640 0.072 0.031 0.160
55 0.097 0.048 0.200 0.664 0.642 0.675 0.064 0.031 0.135
60 0.097 0.048 0.200 0.664 0.642 0.675 0.064 0.031 0.135
65 0.081 0.024 0.200 0.670 0.650 0.675 0.054 0.015 0.135
70 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
75 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
80 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
85 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4 shows the proportion of regions deprived in each indicator used to create the
CEVI. In the first three columns, proportions refer to unidimensional (uncensored) depri-
vations for each indicator. In the last three columns, proportions of deprivated regions are
censored to those who are simultaneously deprived in that particular indicator and are de-
prived in at least 25% of indicators. Thus, the smaller the difference between uncensored
and censored headcounts for the indicator, the more persistent (or structural) vulnerability
is for a region. Results show that the smaller average variation occurs in the suceptibility di-
mension, followed by adaptive capacity. Between regions, the smallest difference is observed
in the AMZ suggesting its highly and persistent vulnerability, both unidimensionally and
multidimensionally.



Table 4. Uncensored and Censored (Cut-off=25%) Headcount by Indicator and Region

Indicator Uncensored Headcount Censored Headcount
Sample Northeast North Sample Northeast North

Risk

R1 24.2 33.3 5.0 11.3 16.7 0.0
R2 24.2 28.6 15.0 9.7 9.5 10.0
R3 24.2 14.3 45.0 12.9 4.8 30.0
R4 24.2 14.3 45.0 9.7 2.4 25.0
R5 24.2 31.0 10.0 9.7 11.9 5.0
R6 24.2 33.3 5.0 8.1 11.9 0.0
R7 24.2 14.3 45.0 9.7 2.4 25.0

Suceptibility

S1 9.7 11.9 5.0 8.1 9.5 5.0
S2 16.1 11.9 25.0 14.5 9.5 25.0
S3 11.3 7.1 20.0 11.3 7.1 20.0
S4 25.8 19.0 40.0 24.2 16.7 40.0

Adaptative Capacity

AC1 25.8 19.0 40.0 17.7 9.5 35.0
AC2 25.8 7.1 65.0 17.7 4.8 45.0
AC3 25.8 16.7 45.0 24.2 14.3 45.0
AC4 25.8 21.4 35.0 22.6 16.7 35.0

Note: R1 = Monthly max value of daily max temperature, R2 = Monthly max value of daily min
temperature, R3 = Percentage of days when max temperature sit above 90th pct, R4 = Percentage
of days when min temperature sit above 90th pct, R5 = Daily temperature range, R6 = Max
number of consecutive days when rainfall < 1mm, R7 = Annual rainfall that exceeded the 99th
pct, S1 = Proportion of elderly and poor, S2 = Proportion of children and poor, S3 = Proportion
of poor, S4 = Proportion of literate adults, AC1 = Proportion of household with adequate sewage,
AC2 = Proportion of household with adequate water supply, AC3 = Proportion of household with
garbage collection, AC4 = Urbanization rate.

The decomposition of CEVI shows that risk and adaptive capacity are the two most
important dimensions among regions with high incidence of infectious and parasitic diseases.
In regions with low incidence, suceptibility explains almost 50% of CEVI, followed by adaptive
capacity. In these regions, risk component is less important, contributing 9.6% against 24.7%
in regions with high incidence (Table 3).

These reults reflect the nature of the infectious and parasitic diseases, which are sensitive
to climatic conditions and to the local sanitary conditions. To show this, we further decom-
pose CEVI by dimension according to both incidence level and region. Regardless of the
region, the contribution of risk is higher in areas with higher incidence of infectious and par-
asitic diseases. However, in NEB suceptibility prevails in areas of low incidence (68.2%) and
adaptive capacity takes place where incidence is high (45.1%). In AMZ, adaptive capacity
is always the major contributor to vulnerability, regardless of incidence level, corresponding
to 48.6% (low incidence) and 58.1% (high incidence) respectively. Findings from Table 3
reflects the low coverage of basic public services in the AMZ compared to the NEB. For



Fig. 3. Dimensional Decomposition of Vulnerability by Levels of Infectious Disease Incidence, Over-
all and by Region

the former, it does not matter if the region has low or high disease incidence, CEVI would
always be predominantly explained by the low adaptative capacity of the area.

5 Concluding Remarks

This paper proposed a composite index of vulnerability to climate extreme and sociosanita-
tion conditions for the two more impoverished areas of Brazil: Amazonia and the Northeast.
These areas are also the most vulnerable to climate extremes for different reasons: the first
host the largest rainforest in the world, while the latter has one of the largest and more
impoverished inhabited desert on Earth. Moreover, because both regions lay in very low
latitudes, they are prone to high incidence of tropical infectious diseases, causing non-trivial
disease burden to their local populations. This paper developed a multidimensional index
of health vulnerability to climate extremes in Amazonia and the Brazilian Northeast ap-
plying the Alkire-Foster method. Vulnerability was conceptualized as represented by three
components: risk (proxied by seven extreme indices based on temperature and precipitation
data from the ClimDex project), suceptibility (proxied by socioeconomic and demographic
indicators, combining income, education and young and elderly dependency ratios), and
adaptive capacity (proxied by sanitation and urbanization variables). Once defined, the in-
dex was decomposed by region and levels of climate-sensitive health indicators (infectious
and parasitic disease rates) to understand how dimensions of vulnerability correlates with
different levels of disease prevalent across regions.
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e eventos climáticos no brasil. Fundação Brasileira para o Desenvolvimento Sustentável
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pará state, brazil. Revista Brasileira de Meteorologia 32 (1), 13–24.

[39] Santos, E. B., P. S. Lucio, and C. M. S. e. Silva (2015). Precipitation regionalization
of the brazilian amazon. Atmospheric Science Letters 16 (3), 185–192.

[40] Sena, A., K. L. Ebi, C. Freitas, C. Corvalan, and C. Barcellos (2017). Indicators to
measure risk of disaster associated with drought: Implications for the health sector. PloS
one 12 (7), e0181394.

[41] Sena, A., C. Freitas, P. F. Souza, F. Carneiro, T. Alpino, M. Pedroso, C. Corvalan, and
C. Barcellos (2018). Drought in the semiarid region of brazil: Exposure, vulnerabilities
and health impacts from the perspectives of local actors. PLoS currents 10.
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of oilseeds in a climate change scenario in the brazilian semiarid). Revista Brasileira de
Geografia F́ısica 5 (6), 1426–1445.

[49] Wu, C., G. Huang, and H. Yu (2015). Prediction of extreme floods based on cmip5
climate models: a case study in the beijiang river basin, south china. Hydrology and Earth
System Sciences 19 (3), 1385–1399.

[50] Xavier, A. C., C. W. King, and B. R. Scanlon (2016). Daily gridded meteorological
variables in brazil (1980–2013). International Journal of Climatology 36 (6), 2644–2659.

[51] Yoon, J.-H. and N. Zeng (2010). An atlantic influence on amazon rainfall. Climate
Dynamics 34 (2-3), 249–264.


